SIAM J. COMPUT. © 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 1-10, February 1993 001

IMPLICIT O(1) PROBE SEARCH*

AMOS FIATY AND MONI NAOR#

Abstract. Given a set of n elements from the domain {1, - - -, m}, this paper investigates how to arrange
them in a table of size n, so that searching for an element in the table can be done in constant time. Yao
[J. Assoc. Comput. Mach., 28(1981), pp. 615-628] has shown that this cannot be done when the domain is
sufficiently large as a function of n.

This paper gives a constructive solution when the domain m is polynomial in n, the number of elements,
as well as a nonconstructive proof for m no larger than exponential in poly (n). The authors improve upon
a result of Yao and give better bounds on the maximum m for which implicit O(1) probe search can be
done. The results are achieved by showing the tight relationship between hashing and certain encoding
problems called rainbows.

Key words. hashing, perfect hashing, spatial complexity, Ramsey theory, randomness in computation

AMS(MOS) subject classifications. 68P05, 68P10, 68Q05, 68R0S5, 68R10

1. Introduction. The problem addressed in this paper is that of searching a full
table: A set Sc {1, -, m} of size n is to be stored in a table T of size n, where every
table entry holds a single element of S. Given x€{1, - - -, m}, the goal is to locate x
in the table or to indicate that x & S, while probing the table as few times as possible.
We assume that n and m are known to the searcher.

Yao [8] has shown that if no storage is available in addition to the table T, then
there is no table organization that enables an element to be located in less than log n
probes. We refer to a table organization that requires no additional storage as an
implicit scheme. Yao’s proof assumes that the domain size m is much larger than the
number of elements n. This immediately raises the following two questions.

(1) For what values of m (relative to n) does an implicit O(1) probe search
scheme exist?

(2) Given that an implicit scheme does not exist, how much additional storage
is required to ensure O(1) search?

In [4] Fiat, Naor, Schmidt, and Siegel show that if m = O(n), then search can be
performed in O(1) time without any additional storage. As for the second question,
Fredman, Komlés, and Szemerédi [5] show that one probe search can be performed
with O(n+vlog n+loglog m) additional bits of storage. In [4] an O(1) probe scheme
is given that requires only O(log n +1loglog m) additional bits of storage.

We give an implicit O(1) probe search scheme for a domain of size m that is
polynomial in the number of elements n. We prove that an implicit scheme exists
whenever m is bounded by 2P°¥") based upon a probabilistic construction. It then
follows from [4] that O(loglog m) additional bits are sufficient for any m.

We provide a refinement to Yao’s theorem mentioned above that yields a better
bound on the maximum m for which implicit O(1) probe search schemes exist. Our
proof technique gives a lower bound tradeoff between the number of probes and the

* Received by the editors March 14, 1991; accepted for publication (in revised form) September 9,
1991. Most of this work was performed while both authors were at the University of California, Berkeley,
California 94720.

+ Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel. The work of this author was
supported by a Weizmann Postdoctoral Fellowship and by National Science Foundation grant DCR 84-11954.

1 IBM Research Division, Almaden Research Center, 650 Harry Rd, San Jose, California 95120. The
work of this author was supported by National Science Foundation grant DCR 85-13926 and CCR 88-13632.

2 AMOS FIAT AND MONI NAOR

size of the domain that allows implicit search. In particular, if O(1) probe implicit
search is possible, then we can show that

2
m=2%" }0(1).

Yao’s proof technique obtains a tower whose height depends on n.

These results are obtained by mean of a class of structures we call rainbows. A
t-sequence over a set U is a sequence of length f, without repetitions, of elements in
U. A (¢, m, n, t)-rainbow is a coloring of all t-sequences over {1, - - -, m} with ¢ colors
so that for any set Sc{1, -, m}, |S|=n; all ¢ colors occur in the coloring of the
t-sequences over S. We show that the existence of (¢c=n, m, n, t = O(1))-rainbows is
essentially equivalent to the implicit O(1) probe search problem for a set of n elements
chosen from the domain {1, - -, m}.

The relationship between rainbows and implicit O(q) probe search schemes is
specified by the following theorems.

THEOREM 1. For m, n, let ¢ =max (n,log m). The existence of a (¢, m, n, t=
O(1))-rainbow yields an implicit O(1) probe search scheme for n elements from the domain
{,---,m}

THEOREM 2. Given an implicit O(1) probe search scheme for n elements chosen
from the domain {1, - - -, m}, we can construct an (n, m, n, t = O(1))-rainbow.

To motivate rainbows, we start in §2 by showing how they can be utilized to
provide virtual memory.

Theorems 1 and 2 are proved in §§ 3 and 4. Section 5 contains a probabilistic
construction fora (¢ = n, m =2°°"Y" p, t= 0(1))-rainbow and an explicit construction
for a (c=n, m=poly (n), n, t = O(1))-rainbow. Thus, by Theorem 1, we achieve the
bounds claimed in the beginning of this section.

From their definition it is apparent that rainbows are related to Ramsey Theory.
Indeed, the impossibility results we have are derived from Ramsey Theory are expressed
in terms of Ramsey numbers.

In § 6 we show bounds on the maximal m, as a function of n, for which an (n,
m, n, t = O(1))-rainbow exists. Thus, Theorem 2 gives bounds on m for which implicit
O(1) probe search schemes exist. Section 6 also discusses the connection between
rainbows and colorings of the uniform hypergraph.

Section 7 deals with the relationship between the rainbow structure and other
structures, called dispersers, proposed in the literature (for completely different applica-
tions). Specifically, we show that if an explicit construction for a certain kind of
dispersers is possible, then we can find an explicit construction for an implicit O(1)
probe search scheme for m that is n'°®". For these dispersers, Sipser [7] gave a
probabilistic construction.

2. Rainbows provide virtual memory. We now show how Rainbows can be used
to simulate additional memory. The virtual memory problem with parameters c, n’, t,
l is defined below:

Virtual memory problem.
® Aset R={r,, r,, -+, r,}, where 1I=r,=m for1=j=n'.
® A series of values v,, v,, -+, v, where 0=vp,=c—1for1=i=1L

Arrange the elements of R in an array A of size n’ (putting each element of R in
a different location), so that given 1=j =1, v; can be reconstructed (decoded) quickly,
via t accesses to A.

Note that we do not require anything about locating elements of R, only that they
will reside somewhere in A.

IMPLICIT O(1) PROBE SEARCH 3

The next lemma shows the relationship between this problem and the existence
of rainbows.

LeMMA 1. Givena (c, m, n, t)-rainbow €, the virtual memory problem for parameters
¢, n', t, I such that n—tl= n can be solved.

Proof. Divide the first t- I locations of the array A into blocks of size t. The
elements of R should be arranged in A so that the color assigned by € to the jth
block, i.e., to the sequence (A[jt+1],- - -, A[(j+1)t]), is v;. To achieve that, a greedy
algorithm can be applied.

Greedy encoding.

® Set U=R.

® Forj=1to !l
- find a sequence s colored v; in U,
- put the sequence s in the jth block of A,
- U<« U\s.

® Arrange U in the rest of A arbitrarily.

Throughout the execution of the loop, the number of elements in U is n'—jt=n.
Hence there is a sequence in U colored by €, and the find step in the algorithm always
succeeds.

This arrangement means that in order to reconstruct v;, we have to determine the
color of the jth block under €, and this can be done via t probes to A. This method
is constructive if the color of a sequence under € can be determined effectively. O

3. Rainbows yield implicit O(1) probe search. Our goal in this section is to prove
Theorem 1. This section is strongly dependent on [4], which is the source of our
techniques. A reader not familiar with the paper should be able to understand the
major steps explained hereafter.

We note the following theorem from [4].

THEOREM 3 [4]. n elements from the domain {1, - - - , m} can be arranged in a table
of size n so that O(1) probe search is possible, provided O(log n+loglog m) additional
bits of storage are available.

We will concentrate on proving a slightly weaker version of Theorem 1.

THEOREM 4. For m, n, let ¢ =max (n,log m). The existence of a (¢, m, n, t=
O(1))-rainbow yields an implicit O(1) probe search scheme for 4n elements from a domain
of size m.

Later, we will show that the rainbow construction is robust in that the constants
(4n) are irrelevant, a (¢, m, n, t = O(1))-rainbow can be translated into another (c*,
m®, n®, t'=0(1))-rainbow for arbitrary fixed exponents e, e,, e;>0.

It now might seem trivial to prove Theorem 1, given Theorem 3. Given 4n elements
from a domain of size m, we encode the O(log n+loglog m) bits required by the
(FNSS) scheme above by choosing O(1) groups of ¢ elements and ordering the elements
in some fixed set of locations in the table as in the greedy encoding. During the search,
the O(1) special elements chosen for the encoding are read; if the search value is not
found, then the elements are interpreted under the rainbow interpretation as represent-
ing the extra bits of storage required by the scheme in [4].

Unfortunately, moving the required elements to their position as required by the
encoding ruins the original order suggested in [4]. To prove our claim, we must start
afresh.

Given a set of n keys, Sc{1,---, m}. Fredman, Komlds, and Szemerédi [5]
describe how to find a perfect hash function f:{1,-:- 6 m}p—>{1,---, n} with the
property that f is one-to-one and onto when limited to the domain S. This function

4 AMOS FIAT AND MONI NAOR

requires a description of O(loglog m)+ o(n log n) bits. The description is split into
O(1) words of size O(log log m +1log n) bits, plus an additional o(n) words of O(log n)
bits each. Evaluating the function f requires reading only O(1) of these words.

We say that S is in the natural order in the table T relative to f if T[f(x)]=x,
x € S. The natural order is easy to search, given f’s description. Another order that
is easy to search 1is obtained by applying an arbitrary permutation
7:{1,---,n/2h>{1, - -, n/2} to the first half of the table and applying 7' to the
second half. (For 1=i=n/2, set T[r(i)]:= T[i]; for n/2<i=mn, set T[7 '(i—n/2)+
n/2]= T[i+n/2].) The idea is that both 7 and 7' are easy to compute. To compute
7 '(i), simply evaluate f(T[i]); to compute 7(i), evaluate f(T[i+n/2]) —n/2. As both
7 and 7' can be computed with one probe to the table, search can be done by
performing two probes to the table.

This is a variation of Feldman’s involution trick, as presented in [2].

The method.

® Find a perfect hash FKS-function f for the 4n elements, as described in [5].

® Divide the elements into two sets, depending on whether f(x) =2n or f(x) > 2n.

® Encode the description of f by arranging the elements x with f(x)=2n in
the first half of T using the greedy encoding of §2. By Lemma 1, this is
possible.

® The arrangement defines a permutation 7 of the elements in the first half of T,

so organize the elements x with f(x)>2n in the second half of the table as
required under 7.

Searching for an element now requires decoding O(1) words of the description
of the FKS-function. Each decoding requires probing the table at O(1) locations. The
natural order can be reestablished by appropriately computing either 7 or 7~ each
of which requires one probe plus O(1) probes to read the [5] function description.
Overall, search requires O(1) probes.

4. Implicit O(1) probe search yields rainbows. In this section we show that rainbows
and O(1) probe search schemes relate in the other direction as well; i.e., given a search
scheme we show how to construct a rainbow. More specifically, we prove a refined
version of Theorem 2.

THEOREM 5. Given an implicit t-probe search scheme for n elements from the domain
{1,---,m}, an (n, m, n, t+2log t)-rainbow can be constructed.

Proof. The sequences are assigned colors based on simulating a search scheme.
The colors 1, - - -, n correspond to locations 1, - - -, n in some imaginary search array.
The idea is that in a t-sequence there is enough information to simulate a ¢t probe
search; i.e., given a t-sequence over {1,---,m}, e,, e,," - -, e,, we simulate a search
for e, in the imaginary array, where e;.,, 1=i=t—1 is the element probed at Step i.
Since the location probed at Step i is determined by the search value and the elements
probed in Steps 1-i—1, we know the location in the imaginary array at each step of
the simulation. The color assigned to the sequence is the last location we are to probe.

The only problem with this description is that e; might be probed at any of the ¢
steps, not necessarily the last, but our sequences do not have repetitions. We can use
log ¢ bits to indicate the step number, j, at which e, is probed. This can be done by
dedicating a pair of elements is allocated for each bit of j. If the elements are in order,
they encode 0; otherwise 1. We assume that these elements are at the end of the
sequence, that is, elements €,.1, €12, *, €ii0g:-

To summarize, the color assigned to the sequence

€1,€, """, 8,641, ", et+210gl

IMPLICIT O(1) PROBE SEARCH 5

is the location of e, in the array for which the search is being simulated, where e, is
encountered in the step encoded by e, -, €. 0. Sequences that cannot be
interpreted in such a fashion are colored arbitrarily.

CrAamM 1. Given a set Sc {1, -+, m} of size n, and any color 1= c= n, there is a
t+2 log t-sequence over S that is colored c.

Proof. Assume that the set S is arranged in the array A so that implicit z-probe
search is possible. Consider the sequence consisting of the elements probed in A when
searching for A[c], concatenated to 2 log ¢ elements in S not appearing in the probe
sequence whose order encodes the step number at which cell ¢ is probed. This sequence
is colored ¢, and consists only of elements in S. O

5. Rainbow construction. This section provides an explicit construction of rain-
bows when the number of colors ¢ = n and the length of the sequence ¢ is a constant.
We start with a construction for a domain m that is quadratic in the number of elements
n (Lemma 2). The ideas behind this construction are later used in showing how to
reduce a problem with domain m to another problem with domain vm (Lemma 3).
This yields an explicit recursive construction for any m that is polynomial in n (Theorem
6). Theorem 6 yields as a corollary that implicit O(1) probe search scheme is possible
when m is polynomial in n. We conclude the section by showing that a probabilistic
construction is good even when m is exponential in n (Theorem 7).

LEMMA 2. For any prime p, there is an explicit construction of a (c=n, m=p>,
n=p+1, t=2)-rainbow.

Proof. Consider a one-to-one mapping from all elements e {1, - - -, m} to pairs
(x,y) such that 0=x, y=p—1. (For instance, x =e (mod p), y=(e—x)/p (mod p).)
Given an element in {1, - - -, m}, we will set its value of the mapping.

Color the sequence (u, v), u = (x,, 1), v = (X2, ¥,), with the color (y, — y,)/ (x5 —x;)
(mod p). If x,=Xx,, then color the sequence (u, v) with the color p. We have colored
all edges of the full directed graph on m vertices. Note that the sequence (u, v) is
colored as the sequence (v, u); hence we can consider the coloring as that of a complete
undirected graph. To prove that this is a good coloring, we need the following.

CrLAmM 2. Consider the edge induced subgraph G; obtained by choosing all edges of
color i. G; consists of p vertex disjoint cliques of size p.

Proof. First, note that every vertex u=(x, y) has exactly p—1 directed edges
(u, v; = (x;, y;)) colored i, for all 0= i = p. For i = p, these are simply pairs (x, y;), y; # y;
for i <p, the x; and values are the p —1 solutions to the equation (y;—y)/(x;—x) =i
(mod p).

To show that the undirected induced subgraph consists of cliques, assume that
the (u, v) and (v, w) sequences are colored i: then the (u, w) sequence must also be
colored i If u=(x;,y,), v=(x5,¥,), and w=(x3,y;), either i=p in which case
y1=y,=y; and (u, w) is also colored p or i<p, in which case (y,—y,)/(x;—x;)=
(y3—y2)/(x3—x,) =i (mod p). It now follows that (y;—y,)/(x3—x,) =i (mod p). O

Remark. Note that all vertices u;, u; = (x;, y;), belonging to the same clique in G;,
have the same value y; —ix; (mod p). This means that we can identify the clique in G;
containing a vertex u.

We can now resume the proof of the lemma. Given a set Sc{1,- - -, m} of size
n=p+1, for all 0<i< p, at least two elements u, v € S belong to the same clique in
G;. This means that both sequences (u, v) and (v, u) are colored i.

To construct a rainbow for m polynomial in n, we use a recursive construction.
We explain how to use the construction above to transform the problem from a domain
of size m to a domain of size v'm by concatenating two elements to each sequence in
the vm domain.

6 AMOS FIAT AND MONI NAOR

LeEMMA 3. Given a construction of a (¢c=n, m=p, n—2, t)-rainbow, p a prime, a
(c=n, p?, n, t+2)-rainbow can be constructed.

Proof. Let €, be a (p+1, p* p+1, 2)-rainbow as described in Lemma 2, and let
%, be an (n, p, n—2, t)-rainbow that exists by assumption. Our goal is to construct
an (n, p?, n, t+2)-rainbow. Givena t +2-sequence é = e,, e,, - * -, €,4,,0ver{l, - - -, m}
we use e; and e, as indicators. If e, > e,, then color & with the color assigned to (e, e,)
under €,.

Given a set Sc {1, -+, m}, |S|=n, if all p+1 colors occur in the coloring of the
2-sequences over S under %,, then we are done. (In fact, the rainbow contains more
colors than required.)

Otherwise, at least one color is missing under €,, but there is at least one color
that appears (we assume n = 2); therefore, there is a color i such that no pair in S is
colored by €, with i, but there exist u, v € S such that (u, v) is colored i—1 (mod p+1)
under €,.

Consider G;, the edge induced graph defined by edges colored i and introduced
above. Every element in S is in a different clique of G;; otherwise there would have
been a pair colored i. The cliques of G; can easily be indexed as described by the
remark at the end of Lemma 2.

If e, <e,, we translate € to a t-sequence, d =d,, d,, - -, d,, over 1,- - ,vV/m. We
color & by the color assigned to d by %,. Let d; be the index of the clique of G;
containing e;.,, 1 =j=t, and i —1 (mod p + 1) is the color assigned to (e,,e,) under 6, .

By the discussion above, it follows that for every S {1, - -, m}, and for every
1=k =c there is a t+2-sequence over S that is colored k. Thus we have described a
construction for an (n, p>, n, t+2)-rainbow. 0

Since for any integer x there is a prime in (x, 2x), we can apply Lemma 3 recursively,
each time reducing the domain from m to 2vm. Using Lemma 2 as the base case
provides us for any d = 1 with an explicit construction of an (¢ = n, m = n% n,2 [log d 1+
[loglog d])-rainbow. Thus we have the following.

THEOREM 6. For any domain m polynomial in the set size n there exists an
(n, m, n, O(1))-rainbow. Given a sequence, its color can be determined in O(1) time
assuming modular arithmetic in unit time.

Remark. Note that the proof implies that the existence of rainbows is a robust
property, meaning that if p,, p,, p; are polynomials, and m is as a function of n such
that a (¢, m, n, O(1))-rainbow exists, then a (p,(c), p.(m), ps(n), O(1))-rainbow exists
as well.

It now follows from Theorem 1.

CoROLLARY 1. For any domain m polynomial in the set size n there exists an implicit
O(1) probe search scheme for which search requires O(1) time, assuming modular
arithmetic in unit time.

Probabilistic constructions. We now turn to probabilistic constructions of rainbows
for m that is exponential in n. Suppose m = 2"', and consider a random coloring with
n colors of all I+2 sequences over {1, -, m}. Foraset Sc{1,: -+, m}, |S|=n, the
probability that a specific color is missing in the /+2 sequences over S is less than

(1 _ l/n)n(n—l)-”(n—l—l)'
There are n colors and (}) sets; hence the probability that there exists a set and a
p y
color such that the color is missing over the set is less than
(m) ‘- (1=1/n) DD o™y
n

_nl+l . lan

«1;

B

therefore, we have the following.

IMPLICIT O(1) PROBE SEARCH 7

THEOREM 7. For any domain m exponential in the set size n there exists an (n, m,
n, O(1))-rainbow.

CoROLLARY 2. For any domain m exponential in the set size n there exists an implicit
O(1) probe search scheme.

6. Bounds on rainbows. In this section we give bounds on the maximum m, as a
function of n and ¢, for which a (¢ =n, m, n, t)-rainbow can exist. We will do that by
showing the connection between rainbows and colorings of the t-uniform hypergraph.
Consider a coloring of all t-subsets (subsets of size) of {1, - - -, m} with ¢ colors.
Ramsey Theory tells us that there exists a function R(n, ¢, ¢) such that if m > R(n, ¢,
¢), then for any coloring of the t-subsets of {1, - - -, m} with ¢ colors there exists a set
Sc{l,: .-, m} of size n such that all the t-subsets over S are colored with the same
color. (See the book by Graham, Rothschild, and Spencer [6] for details on Ramsey
Theory.)

THEOREM 8. If there exists a (¢, m, n, t)-rainbow and c>t!, then

m=R(n,t t'+1).

Proof. Let € be a (¢, m, n, t)-rainbow. Define a coloring of the t-subsets of
{1, -+, m} @: for each subset H< {1, - - - , m} of size t consider all possible orderings
of H. Each of the t! possible orderings receives a color in the rainbow. Since there
are more than t! colors in the rainbow, we know that there is a color i, 1=i=t!+1,
which none of the orderings receives. & colors H with the least such i. From Ramsey
Theory it follows that if m> R(n, t, t!+1), then there will be a set S<{1, - -, m} of
size n such that all of S subsets of size t are colored under & with the same color i.
Hence under € none of the t-sequences over S are colored i, and thus € is not a
rainbow. 0

How fast does R(n, t, t!+1) grow? Let the tower functions h;(x) be defined as
h,(x)=x and h;,,(x)=2"" for i=1. That is,

2
hi(x) =2 }i—l.

The Stepping Up Lemma in [6, p. 91] yields the following: h;_,(c, n’)= R(n,j,
2)=hi(c, - n) for some fixed ¢, and c,. By the method of the proof of Ramsey’s
Theorem, increasing the number of colors from 2 to #!+1 does not add more than
log t!+1 to the height, i.e., R(n, t, t!+1) <h[10g1+1)1(c2n). Hence we can conclude
that for a (c=t!+1, m, n, t = O(1))-rainbow to exist we must have

2"
m=22" }0(1).

Applying Theorem 2, on the connection between rainbow and ¢-probe search, we
get that an implicit #-probe scheme can exist only if m<R(n, t', t''+1), where
t'=t+2log t. Thus, for an implicit O(1) probe search to exist we must have

2"

This constitutes a new proof of Yao’s theorem [8] with better bounds. His bounds
imply that m < R(2n —1, n, n!), which grows much faster. Yao’s proof has the advantage
that it implies that whenever m= R(2n—1, n, n!), the lower bound on the search time
is [log n]. Our proof cannot give better bounds than Q(log n/loglog n), since ¢!+1
must be less than n.

8 AMOS FIAT AND MONI NAOR

Any improvement on the lower bounds for rainbows would yield a better lower
bound for implicit O(1) probe search. Conversely, constructive implicit O(1) probe
search schemes for higher bounds imply better rainbow constructions. The reader can
interpret this as either an optimistic or a pessimistic statement.

Undirected rainbows. We now show that the existence of rainbows is closely related
to that of undirected rainbows defined as follows: A (¢, m, n, t)-undirected rainbow is
a coloring of all t-subsets over {1,---, m} with ¢ colors, so that for any set Sc
{1, - -, m}, |S|=n, all ¢ colors appear in the t-subsets over S.

Since the order itself in directed rainbows can determine ¢! different colors, we
know that (¢ =1t!, m, n, t)-rainbows exist for any m and n such that m = n. However,
by Ramsey theory, this is not true for undirected rainbows. On the other hand, the
next theorem shows that in order to give bounds on the maximum m for which (¢ =n,
m, n, O(1))-rainbows exist, it is enough to consider undirected rainbows.

THEOREM 9. For every t there exists a constant b,, dependent only upon t, such that
a construction for a (¢c=n, m, n, t)-rainbow yields a construction for a (c=n, m,
[log (t!)+1] - n, b,)-undirected rainbow.

Proof. The idea is to provide enough information in the b,-subset so as to simulate
an ordered set. If, in addition to a t-subset, [log (¢!)] bits are provided to determine
the order in the t-subset, then the color of the subset will be the color of the
corresponding t-sequence in the (¢ =n, m, n, t)-rainbow.

Let € be a (c=n, m, n, t)-rainbow. From Theorem 8 we know that m < R(n, t,
t!+1), and thus m < h,(c,n) for some t', depending only on t. From the lower bound
on R(n, j, 2) of the Stepping Up Lemma there exists a (2, n, m, t') undirected rainbow
. Let b,=t+1t - [log (¢!)]. Define €', a coloring of b,-subsets, as follows. Sort the
b,-subset and partition it into [log (¢#!)]+1 subsets of consecutive elements such that
the subset of the largest elements is of size ¢, and all the rest are of size t. Compute
the coloring under & of each of the t'-subsets. Each of the [log (¢!)] t'-subsets supplies
one bit under its 2-coloring, and together those bits determine an ordering of the
t-subset. The color €’ assigns is the one ¥ assigns the t-sequence, resulting from the
the t-subset when it is ordered by the encoding given by the smaller subsets.

To see that €' is indeed a (c=n, m, [log (¢!)+1[- n, b,)-undirected rainbow,
consider any S<{1,---,m} of size [log(t!)+1]- n. Partition S into [log (t!)+
1] - subsets S, S,, - - -, such that each S, is of size n and all the elements of S; are
smaller than those of S;;,. For any color 1=j=¢, € colors at least one t-ordered
subset of Sjog1)+17 With j. The order of this subset determines [log(t!)] bits b,
by, - -+, bpiog(r1y1- In each subset S; there is a t'-subset colored b; under /. The b, subset
of S that is the union of all these subsets is colored j under €. 0

7. Construction through dispersers. In this section we show how an explicit con-
struction for dispersers, defined below, yields an explicit construction for rainbows
with m=n'®". An (m, n, d, a, b)-disperser is a bipartite graph with m nodes on the
left side, each with degree at most d, n nodes on the right side with the property that
every subset of a nodes in the left side is connected to at least b of the nodes of the
right side. These graphs have been used, for instance, by Ajtai, Komlos, and Szemerédi
[1] and Sipser [7] to remove randomness in probabilistic algorithms. Cohen and
Wigderson [3] provide a survey of constructions and applications.

Let m = n'°®". We first show how to construct a rainbow with log n colors for such
m and n, and then we show how to apply it with a (m, n, log® n, n, n/2)-disperser to
get an (¢ =n, m, n, O(1))-rainbow.

IMPLICIT O(1) PROBE SEARCH 9

LEMMA 4. There exists an explicit construction for a (¢ =log n, m, n, O(1))-rainbow
ifm is npolylog(n).

Proof. For 1=x=m let x; denote the ith bit of x. Consider the coloring of pairs
that assigns the pair (x, y) min,<;=jogm Xi # ¥i, 1.€., the first bit in which x and y differ.

Cramm 3. Inanyset Sc {1, -, m} of size n, the pairs must be colored with at least
log n different colors.

To see that the claim is true, consider organizing the elements of S in a trie, i.e.,
in a binary tree where each element appears as a leaf and its value is determined by
the path from the root. If a node in the ith level of the trie has two children, then
there is a pair (x, y), where x is a descendent of the left child and y a descendent of
the right child, that is, colored i. There must be at least log n levels in which there is
a node with 2 children, since each level at most doubles the number of nodes from
the previous one and there are n leaves.

The claim shows that rather than having a set of size n out of a domain of size
m, the problem can be reduced to that of a set of size log n from a domain of size
log m. If m is nP°Y'°&") then log m is polynomial in log n, and hence the construction
of Theorem 6 can be applied to obtain the required rainbow.

Sipser [7] gave a probabilistic construction for an (n'°®", n, log” n, n, n/2)-disperser.
Given such a disperser D, we now show how to use such dispersers to amplify rainbows
and construct (¢=n, m=n'"%", n, O(1))-rainbows. Let € be a (c=log’n, m, n—1,
t)-rainbow whose existence is assured by the previous lemma and the remark following
Theorem 6. Consider a coloring of ¢+ 1-tuples over {1,- - -, m} defined as follows.
The first ¢ elements are used to obtain a color ec{1---log’ n} via €. The ¢+ 1st
element, ve{1, - - -, m} is treated as a node on the left side of D. e specifies a neighbor
of v on the right side of D. The neighbor is the color of the t-tuple. Since any set of
n nodes on the left side is adjacent to at least half the nodes on the right side, and
since € is a (log’ n, m, n, t)-rainbow, it follows that for any set S<{1, - - -, m} of size
n there is a set T< {1, - -, n} of size at least n/2 such that we can specify in this
manner any member of T. Using the construction of Lemma 2, this can be amplified
to include all the n nodes on the right. This construction gives a (¢ =n, m =n'"%", n,
2t+2)-rainbow. Therefore, an explicit construction for a disperser with those para-
meters yields an implicit O(1) probe search scheme for m = n'°".

No explicit construction with parameters close to the ones given in [7] is known.
The best explicit construction for such expanders is given in Ajtai, Komlds, and
Szemerédi [1].

8. Conclusions and open problems. As a consequence of the results of this paper,
the maximal m for which implicit O(1) probe is possible lies between 2m”°”" and a
constant height tower of powers. One obvious, open problem is to close this gap.
Finding an explicit construction for rainbows with m superpolynomial in »n is another
obvious research direction. A different question is whether rainbows are useful for
implicit data representation in other settings.

Note added in proof. Zuckerman [9] has found some constructions related to those
in §7.

Acknowledgments. We thank Noga Alon, Joel Friedman, Nati Linial, Mike Luby,
Jeanette P. Schmidt, Alan Siegel, and Avi Wigderson for helpful discussions and advice
and are grateful to the two anonymous referees for their diligent reading and many
useful remarks.

10 AMOS FIAT AND MONI NAOR

REFERENCES

[1] M. AJTAl, J. KOMLOS, AND E. SZEMEREDI, Deterministic simulation in LOGSPACE, in Proc. 19th
ACM Symposium on Theory of Computing, 1987, pp. 132-140.

[2] A. BoroDIN, F. E. FicH, F. MEYER AUF DER HEIDE, E. UPFAL, AND A. WIGDERSON, Tradeoff
between search and update time for the implicit dictionary problem, Theoret. Comput. Sci., 58 (1988),
pp. 57-68.

[3] A. COHEN AND A. WIGDERSON, Multigraph amplification, 1989, manuscript.

[4] A. FIAT, M. NAOR, J. P. SCHMIDT, AND A. SIEGEL, Non-oblivious hashing, in Proc. 20th ACM
Symposium on Theory of Computing, Chicago, IL, pp. 367-376.

[5] M. L. FREDMAN, J. KoMLOs, AND E. SZEMEREDI, Storing a sparse table with O(1) worst case access
time, J. Assoc. Comput. Mach., 31 (1984), pp. 538-544.

[6] R. L. GRAHAM, B. L. ROTHSCHILD, AND J. H. SPENCER, Ramsey Theory, Wiley, New York, 1980.

[7] M. SipSER, Expanders, Randomness or time versus space, J. Comput. System Sci., 36 (1988), pp. 379-383.

[8] A. C. YAO, Should tables be sorted?, J. Assoc. Comput. Mach., 28 (1981), pp. 615-628.

[9] D. ZUCKERMAN, Stimulating BPP using a general weak random source, in Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, October 1991,
pp. 79-89.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 11-28, February 1993 002

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS OF A GRAPH
ON-LINE*

ZVI GALIL' anp GIUSEPPE F. ITALIANO?

Abstract. The problem of maintaining the 3-edge-connected components of a graph undergoing repeated
dynamic modifications, such as edge and vertex insertions, is studied. This paper shows how to answer the
question of whether or not two vertices belong to the same 3-edge-connected component of a connected graph
that is undergoing only edge insertions. Any sequence of ¢ query and updates on an n-vertex graph can be
performed in O((n + q)a(g, n)) time.

Key words. analysis of algorithms, dynamic data structures, edge connectivity, vertex connectivity

AMS(MOS) subject classifications. 68P05, 68Q20, 68R10

1. Introduction. Given an undirected graph G = (V, E), and an integer k > 2, a
pair of vertices (u,v) is said to be k-edge-connected if the removal of any k — 1 edges
in G leaves u and v connected. This is an equivalence relationship, and we denote it by
=y, 1.e., if a pair of vertices (z,y) is k-edge-connected we write z =, y. The vertices
of a graph G are partitioned by this relationship into equivalence classes called k-edge-
connected components. An edge set E' C E is ar. edge-cut for vertices and y if the
removal of all the edges in E’ disconnects z and y. The cardinality of an edge-cut E’,
denoted by |E’|, is given by the number of edges in E’. An edge-cut E’ for and y is
said to be a minimum cardinality edge-cut or in short a min-edge-cut if there is no other
edge-cut E” for z and y such that |[E”’| < |E’|. Then = y if and only if a min-edge-cut
for z and y contains at least k edges. A graph G is said to be k-edge-connected if all its
pairs of vertices are k-edge-connected. A min-edge-cut of cardinality 1 is called a bridge.
Similarly, a vertex set V! C V' — {xz,y} is a vertex-cut for vertices = and y if the removal
of all the vertices in V' disconnects z and y. The cardinality of a vertex-cut V’, denoted
by |V’|, is given by the number of vertices in V'. A vertex-cut V' for z and y is said to be
a minimum cardinality vertex-cut or in short a min-vertex-cut if there is no other vertex-
cut V" for z and y such that |V”| < |V’|. Then z and y are k-vertex-connected if and
only if a min-vertex-cut for z and y contains at least k vertices. A graph G is said to be
k-vertex-connected if all its pairs of vertices are k-vertex-connected. A min-vertex-cut of
cardinality 1 is called an articulation point.

The following theorems, due to Menger; Ford and Fulkerson; Elias, Feinstein, and
Shannon (see, for instance, [17]), give another characterization of k-vertex and k-edge
connectivity.

THEOREM 1.1 (Menger). Given a graph G and two vertices x and y in G, x and y are
k-vertex-connected if and only if there are at least k vertex-disjoint paths between x and y.

THEOREM 1.2 (Ford and Fulkerson; Elias, Feinstein, and Shannon). Given a graph
G and two vertices © and y in G, x and y are k-edge-connected if and only if there are at

*Received by the editors March 8, 1991; accepted for publication (in revised form) August 12, 1991. This
work was partially supported by National Science Foundation grants CCR-8814977 and CCR-9014605, by the
ESPRIT II Basic Research Actions Program of the EC under contract 3075 (Project ALCOM), and by the
Italian MURST Project “Algoritmi e Strutture di Calcolo.” Portions of this paper appear in the Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1991, pp. 317-327.

'fDepartment of Computer Science, Columbia University, 450 Computer Science Building, New York,
New York 10027, and Tel-Aviv University, Tel-Aviv, Israel.

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza,” Rome, Italy. Present
address, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598. Part of this work, which was
done while the author was at Columbia University, was partially supported by an IBM Graduate Fellowship.

11

12 Z.GALIL AND G. E ITALIANO

least k edge-disjoint paths between x and y.

Vertex connectivity and edge connectivity problems arise naturally in many applica-
tions and have been extensively studied. Much attention has been given to the 2-vertex-
connected (or biconnected) components and 2-edge-connected (or bridge-connected)
components of a graph. Tarjan [32] gives optimal linear-time sequential algorithms. Tar-
jan and Vishkin [34] give logarithmic-time parallel algorithms. Recently, Westbrook and
Tarjan [36] considered the problem of maintaining biconnected components and bridge-
connected components undergoing any sequence of edge and vertex insertions. They
presented algorithms that run in a total of O(ga(g, n)) time, where q is the total number
of operations, n is the number of vertices, and « is a functional inverse of Ackermann’s
function. As for 3-vertex-connectivity, Hopcroft and Tarjan [18] showed how to com-
pute the triconnected components of a graph in linear time. Di Battista and Tamassia [6]
showed how to maintain the triconnected components of a graph during edge insertions
in a total of O(q + nlogn) time', where ¢ is the total number of operations performed
and n is the number of vertices. Their algorithm achieves an O(ga(g,n)) bound only in
the case of an initially biconnected graph.

In the last decade there has been a growing interest in dynamic problems on graphs.
In particular, much attention has been devoted to (among others) the dynamic mainte-
nance of connected components [10], [11], [26], [28]; 2- and 3-connectivity [6], [15]; [35],
[36]; transitive closure [2], [19], [20], [21], [24], [31], [37]; planarity [5], [6], [30]; short-
est paths [1], [4], [9], [25], [27], [29], [37]; and minimum spanning trees [3], [8], [11],
[29]. In these problems we would like to answer queries on graphs that are undergoing
a sequence of updates, for instance, insertions and deletions of edges and vertices.

A problem is said to be fully dynamic if the update operations include both insertions
and deletions of edges. On the other hand, a problem is called partially dynamic if only
one type of update, i.e., either insertions or deletions, is allowed. The goal of a (fully
or partially) dynamic graph algorithm is to update efficiently the solution of a problem
after dynamic changes, rather than having to recompute it from scratch each time. Given
their powerful versatility, it is not surprising that dynamic algorithms and dynamic data
structures are usually more difficult to design than their static counterparts.

In this paper we study the partially dynamic problem of maintaining the 3-edge-
connected components of a connected graph during edge insertions. We wish to main-
tain the graph under an intermixed sequence of operations of the following kinds.

Same3EdgeBlock(u,v): Return true if vertices u and v are in the same 3-edge-connected
component. Return false otherwise.

InsertEdge(z,y): Insert a new edge between the two vertices x and y.

AddVertex(u,v): Add a new vertex u to the graph, and connect it to G by means of the
edge (u,v).

We give algorithms that support any sequence of g InsertEdge, AddVertex, and
Same3EdgeBlock operations on an initially connected graph with n vertices in a total
of O((n + q)a(g,n)) time. Notice that the best-known bound for the twin problem of
maintaining in a partially dynamic fashion the triconnected components of a graph is
O(q + nlogn) [6], and the algorithms given in [6] achieve the O(ga(g, n)) bound only in
the case of an initially biconnected graph.

Our techniques combine a variety of graph properties, and data structures. We rep-
resent the 3-edge-connected components of a graph by means of a tree structure, and

1n this paper all the logarithms are assumed to be base two.

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 13

update and query this tree instead of the original graph. Indeed, we represent a graph G
by a tree of 2-edge-connected components, each of which is itself represented as a tree of
3-edge-connected components. We then develop efficient data structures for updating
this representation during edge and vertex insertions.

The remainder of the paper consists of four sections. Section 2 gives some graph-
theoretical properties of k-edge-connectivity. Section 3 gives our bounds for 2-edge-
connected graphs, and §4 extends these bounds to connected graphs. In §5 we list some
concluding remarks.

2. Some properties of k-edge connectivity. Let G = (V, E) be an undirected graph.
Let V1, Va,..., V], be a partition of the vertices of G = (V, E) such that if z,y € V,
1 <4 < p, then z = y. Notice that V4, V5,..., V], are not necessarily the k-edge-
connected components of G since we can have u =, v foru € V; and v € V}, i # j. Let
»(G) = (p(V), p(F)) be the graph obtained from G by shrinking each V;, 1 < ¢ < p,
into one super-vertex ¢(V;). If e = (u,v) isanedge of G, u € V;, v € V}, let p(e) =
(¢(Vi), ¢(V;)) be the corresponding edge in ¢(G). Notice that ¢(G) can contain multiple
edges and self-loops. For any E' C E, let o(E’) = {p(e)|le € E'}. As a consequence
of this definition, |¢(E’)| = |E’| for any edge set E’ C E. Similarly, if z € V; we define
¢(x) = ¢(V;). In the sequel such a ¢ will be referred to as a k-edge-connectivity obeying
mapping.

The following lemmas characterize some combinatorial properties of the k-edge-
connected components of a graph.

LEMMA 2.1. Let ¢ be a k-edge-connectivity obeying mapping. A set of edges E', |E'| <
k — 1, is an edge-cut for x and y in G if and only if p(E") is an edge-cut for p(x) and ¢(y)
in o(G).

Proof. Assume ¢(E') is not an edge-cut for ¢(z) and ¢(y) in ¢(G). Thus, there is
a path ¢(7) in ¢(G) between (z) and ¢(y) containing no edges in p(E’). Let ¢(e1),
p(e2),...,p(ep) be the edges in ¢(7), and let ey, e, . . ., €, be the corresponding edges
in G. Clearly, e; € E', 1 < i < q. However, eq, e, . .., e, does not give a path in G. Let
ei = (u43,v;),1 < i < g. Denote z by vg and y by up1. By definition of p(G), v; =¢ ui41,
0 < i < p. By Theorem 1.2, there are at least k£ edge-disjoint paths in G between v; and
u;+1, 0 < 7 < p. Since |E’'| < k — 1, there is at least one path 7; between v; and u; 1,
0 < ¢ < p, containing no edgesin E’. Asaresult, mp-e1 -7 -€ez2-...:ep- T, gives a path
in G between z and y, avoiding edges of E’. Hence E’ is not an edge-cut for z and y
in G.

Conversely, assume E’ is not an edge-cut for = and y in G. That is, there is a path
m = {& = v,V1,...,V4-1,9¢ = y} in G containing no edges of E’. Then p(7) =
{p(x), p(v1),...,0(vg—1),(y)} gives a path between ¢(z) and ¢(y) in ¢(G) that
uses no edges of ¢(E’). Therefore, ¢(E’) cannot be an edge-cut for ¢(z) and ¢(y) in
e(G). O

LEMMA 2.2. Let ¢ be a k-edge-connectivity obeying mapping. Let ¢(V;) and (V) be
any two vertices in ¢(G), and let x and y be any two vertices of G, x € V;, y € V;. Given
any integer h, 1 < h < k, o(V;) and ¢(V;) are h-edge-connected in ¢(G) if and only if «
and y are h-edge-connected in G.

Proof. If V; = V;, the lemma is trivial.

Assume i # j and let V; and V; be such that ¢(V;) #5 ¢(V;) in the contracted graph
©(G). This means that there is a min-edge-cut for ¢(V;) and ¢(V;) in ¢(G) containing
at most h — 1 edges. Let A be such such a min-edge-cut, |A| < h— 1. Let z be any vertex
in V;, and let y be any vertex in V;. Let E = {e € E|p(e) € A}. By Lemma 2.1, E is an
edge-cut for z and y in G. Since |E| = |A| < h — 1,z #, yinG.

14 Z. GALIL AND G. E. ITALIANO

Let = and y be vertices in G such that x #, y. Letz € V;, y € V}, 1 # j. Let E/,
|E'| < h — 1, be an edge-cut for z and y in G. Then by Lemma 2.1, p(E'), |p(E')| =
|E'| < h — 1,is an edge-cut for p(V;) and ¢(V}) in ¢(G). Therefore, o(V;) #x ¢(V;) in
»(G). 0

3. Maintaining 3-edge-connected components of 2-edge-connected graphs. In this
section we show how to maintain efficiently the 3-edge-connected components of a graph
G under any sequence of the operations InsertEdge, AddVertex, and Same3EdgeBlock.
We recall here that InsertEdge(z,y) adds a new edge between vertices =z and y,
AddVertex(u, v) inserts a new vertex u and connects it to vertex v, and Same3EdgeBlock
(u,v) returns true if vertices u and v are in the same 3-edge-connected component of
G, and it returns false otherwise. We consider first 2-edge-connected graphs and then
generalize the results to connected graphs.

Let G be a 2-edge-connected graph with n vertices subject to Same3EdgeBlock and
InsertEdge operations. In this section we do not consider AddVertez operations since
they do not preserve G 2-edge-connected; we show how to deal with them in the next
section.

For any vertex z in G, denote by C(z) the 3-edge-connected component containing
z. We show now how to maintain information about 3-edge-connected components of
a 2-edge-connected graph G during edge insertions. Let G’ be the graph obtained by
contracting each 3-edge-connected component of G into a super-vertex. Notice that
there can be multiple edges in G’. We use interchangeably the terms 3-edge-connected
component of G and super-vertex in G’. By hypothesis G is 2-edge-connected, and by
Lemma 2.2 G is 2-edge-connected, too. As a result, any two super-vertices of G’ lie on
a common cycle. The following lemma states that G’ consists of simple cycles such that
any two of them share at most one super-vertex (see also [7], [22]).

LEMMA 3.1. Two simple cycles of G’ can intersect in at most one super-vertex.

Proof. We proceed by contradiction. Assume there exist two different simple cycles
A; and A; of G’ intersecting at two super-vertices o; and os. Then there must be a
subpath of A, between two vertices o’ and o” of A; (not necessarily o; and o2) that is
edge-disjoint from A;. As a result, there are three edge-disjoint paths between ¢’ and
0" in G'. By Theorem 1.2, ¢/ =3 ¢” in G’. By Lemma 2.2, any two vertices z and y of G
such that z € ¢’ and y € ¢” are 3-edge-connected. Consequently, o’ and ¢” cannot be
3-edge-connected components of G, a contradiction. 0

LEMMA 3.2. Each biconnected component of G’ is a simple cycle.

Proof. We proceed by contradiction. Let B be a biconnected component of G’ that
is not a simple cycle. This implies that there are three edges e;, ez, and e3 in B that
do not lie in a simple cycle. However, since two edges belong to the same biconnected
component if and only if they lie in a same simple cycle, there must be a simple cycle
A; containing both e; and e;, and a simple cycle A, containing both es and e3. Since
ez belongs to both A; and Ay, A; and A, must intersect in at least two vertices, which
contradicts Lemma 3.1. 0

Define T as the block tree of G’. We recall here that given a graph G, the block
tree of G is defined as follows (see, for instance, [17]). The nodes of the block tree are
partitioned into square and round nodes: square nodes correspond to the vertices of G,
while round nodes correspond to the biconnected components of G. There is an edge
between a square node u and a round node p if and only if vertex u of G is in biconnected
component p. Also, there is an edge between a square vertex v and round vertices p;
and p; if and only if u is an articulation point separating biconnected components p; and
P2 in G.

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 15

©

FiG. 1. (a) A 2-edge-connected graph G; (b) the graph G'; and (c) the tree of 3-edge-connected components
of G.

In the following, we refer to T as the tree of 3-edge-connected components of G. No-
tice that each 3-edge-connected component of G corresponds uniquely to a super-vertex
of G’ and to a square node in 7. In the remainder of this section we use interchangeably
the terms 3-edge-connected component of G, super-vertex of G’, and square node of 7.

Figure 1 shows graphs G and G’, as well as the block tree 7.

We root the tree 7 arbitrarily at any square node. Edges of 7 are considered di-
rected from children to parent. Furthermore, for each simple cycle in G’, we maintain
the same cyclic order of vertices in 7 (see Fig. 1). In other words, let 01, 02, ...,0, be
the vertices of G’ encountered in a counterclockwise walk around around a cycle p. Then
in 7 there is one square node oy, 1 < £ < p, that is the parent of p, and all the children
of p from left to right are o441,00492,...,0p,01,02,...,0¢—1. The following corollary
follows easily from Lemma 3.2 and the definition of block tree of a graph.

16 Z.GALIL AND G. F. ITALIANO

COROLLARY 3.3. Let x and y be any two vertices in G, x #3 y. Let C(z) and C(y) be
the 3-edge-connected components containing x and y, respectively. Let 7 , be the pathin T
between C(z) and C(y) containing vertices C(x) = 01, p1,02,...,0¢-1,Pq-1,0¢ = C(y),
g > 2 (o; are square nodes and p; are round nodes). Then o3,03,...,04_1 are all the
articulation points separating C(z) and C(y) in G’, and all the simple paths between C(z)
and C(y) in G’ are given by the q — 1 simple cycles p1, p2, . .., pg—1-

Besides maintaining 7', we maintain the actual 3-edge-connected components of G
as disjoint sets subject to union and find operations. The name of any such set gives a
pointer to the corresponding square node in 7. For each vertex z, find(z)=C(z) (i.e.,
find(z) returns the 3-edge-connected component containing vertex = in G). With this
data structure, a Same3EdgeBlock(z,y) operation can be simply performed by checking
whether find(z) = find(y). The union operations will be used to update efficiently the 3-
edge-connected components during InsertEdge operations. We recall that using the fast
set-union data structures of [33] yields that any sequence of g union and find operations
on a collection of n elements can be performed in O(ga(g, n)) worst-case time.

Let = and y be any two vertices in G such that z #3 y. Denote by C(z) and C(y)
the square nodes in 7 corresponding to the 3-edge-connected components of z and y,
respectively, and let 7., be the path in 7 between C(z) and C(y). We now describe
the updates needed in 7 because of the insertion of a new edge (z,y). As the following
lemma shows, the path in 7 between C(z) and C(y) plays a crucial role in the update.

LEMMA 3.4. Let G be a 2-edge-connected graph. After the insertion of (z,y), all the
vertices of the 3-edge-connected components corresponding to square nodes in m ,, become
3-edge-connected, while there is no change in the other 3-edge-connected components of G.

Proof. Let V1, Vs, ..., V, be the 3-edge-connected components of G before the in-
sertion of edge (z,y). Let V{,V;,...V,, 1 < ¢ < p, be the 3-edge-connected of G
corresponding to the square nodes of 7 in 7, 4, as they are met while going from C(z)
to C(y) in 7. Notice that C(z) = V{ and C(y) = V. Let G™** = G U {(z,y)}. Simi-
larly, let (G™¢*)’ be the graph obtained from G™* by contracting its 3-edge-connected
components.

Consider the graph Gi.,,, = G’ U {(C(z),C(y))}. Notice that Gj}.,,, is not neces-
sarily (G™¢*)’. However, since any two vertices that were 3-edge-connected in G are still
3-edge-connected in G™*¥, V4, Vs, ..., V, gives a partition of the vertices of G™** such
that if u, v € V;, then u =3 v. Therefore, Gi.,,, can be derived from G™** by applying a
3-edge-connected obeying mapping ¢ to G™*: namely, Gi.,,, = (G™").

Assume first that C(z) = C(y). Since by definition no two vertices of G’ are 3-edge-
connected, then no two vertices of p(G™") are 3-edge-connected either. Therefore, by
Lemma 2.2 there is no change in the 3-edge-connected components of G. In this case
7z,y = {C(z)} and the lemma is trivially true.

Assume now C(z) # C(y). By Corollary 3.3, all the simple paths between C(z) =
Vi and C(y) = V; in G’ are given by ¢ — 1 simple cycles py, p, . .., pg—1 in G’ such that
Vi €p,Vy €pg-1,pi-1Npi ={V/},2<i<g-1landp;Np; =0,i < j—2o0r
i > j+ 2. Eachp;,1 < i < ¢q— 1, is composed of two disjoint paths between V; and

1 2
i'+1, say, pg) and pz(),

Then there are three edge-disjoint paths between V; and V/, 1 < i < j < g, in

©(G™®). The first is given by pgl), Pz('-1+)1’ e p§1_)1; the second by pgz)’ pgfﬁl, cers p§2_)1;

and, finally, the third is given by pgl_)l, pgl_)z, c p§1), (C(=),C(y)), pfll_)l, p((ll_)2, ceo pgl).
Thus V; =3 V.

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 17

We now show that only the vertices V/, 1 < i < ¢, become 3-edge-connected in
©(G™). Let V be any vertex of G’ different from V/, 1 < i < g, and let V;, 1 <
i < p, be any vertex of G’ different from V. Since vertices of G’ correspond to 3-edge-
connected components of G, V #3 V; in G'. We show that also V #3 V; in o(G"e®).
By Corollary 3.3, all the simple paths between V and V; in G are given by p > 1 simple
cycles py, 5, . - ., pp in G’ such that Ve 1, Vi € pp,. Consequently, if e; and e are the
two edges of p} incident to V, {e1, e2} separates V and V; in G'. Therefore, the removal
of {e1, ez} breaks G’ into two pieces: G and G} such that G} contains V and G}, contains
Vi. We claim that the removal of {e;, e2} must leave C(z) and C(y) on the same side
(i.e., either both in G or both in G%). Indeed assume by contradiction that C(z) and
C(y) are left in different sides by the removal of {e;,ez}. Without loss of generality,
let C(z) be in G} and C(y) be in G%. This implies that {e;, ez} is an edge-cut for C(z)
and C(y) in G'. Since e, and e, are both incident to V in G, also the removal of V
together with its incident edges disconnects C(z) and C(y) in G’. This implies that V is
an articulation point whose removal disconnects C(z) and C(y) in G’. But by Corollary
3.3, this gives V= V/, for some i, 1 < ¢ < ¢, contradicting our assumption. Since C(z)
and C(y) must be either both in G, or both in G}, {ey, e} still separates V and V; in
©(G™v) = G' U {C(z), C(y)}. Consequently, V #3 V; in p(Gmev).

By Theorem 1.2, all and only the vertices V{, V3, ...,V become 3-edge-connected
in p(G™"), while all the remaining vertices of o(G™") stay 2-edge-connected. By
Lemma 2.2 all and only the vertices of G contained in V},V;,...,V, become 3-edge-
connected. 0

Lemma 3.4 gives a way to compute (G™*)’ from G’. As shown in the lemma, all
the paths between V/ and V in G’ are given by ¢ — 1 edge-disjoint simple cycles
P1,P25- -5 Pg—1 in G’ such that Vll € p1, Vq' € Pg-1, and p;_1Np; = {Vil}, 2<i1<qg—1.
Each p; is composed of two edge-disjoint paths between V/ and V/, ,, say, p§1) and p,("’).
Furthermore, the insertion of (z,y) in G implies that all and only the vertices in V/,
1 < i < p, become 3-edge-connected in G. Therefore, (G™¢*)’ can be computed from
G' by simply shrinking all the vertices V, V3, ..., V] into one vertex V'. This destroys
the previous simple cycles p;, 1 < 7 < g — 1, and creates at most 2(¢ — 1) new simple
cycles p§1) and pt(-z), 1 <i < g — 1, that are all incident to V' in (G™*")’.

The changes in G’ induce updates in 7, which is the block tree of G’. We denote by
A the least common ancestor of C(x) and C(y) in 7. The update causes the following
transformations on the path 7, , of 7, to obtain 7™¢¥, the block tree of (G™")’.

(i) Merge together all the square nodes V/, V5, ...,V in 7, , into a new square
node V'.

(ii) For each round node p; # X in 7,4, denote by V; and V},; the two square

nodes in 7, , adjacent to p;. Without loss of generality, let V;/, ; be the parent of p; in

g,y Let agi), .. ,agi), Vi, bgi), cee, bgi), s,t > 0, be the children of p; sorted from left to
(1) (2). (4) (4) M and

right. Split p; into two round nodes p; ’ and p,”’: make a;",...,as" children of p;
b,..., b children of p{>). Make p{") and p{ children of V". If s = 0 [t = 0], delete
o 1p7)

(iii) If X is a round node, again denote by V/ and V;,, the two square nodes in
75,y adjacent to A\. Without loss of generality, let agi), o, |28 bii), b, i1
cgi), e ,cﬁf), s,t,u > 0, be the children of A sorted from left to right. Split A into
two round nodes A() and A(®): make agi), cna v DL e children of A and

18 Z. GALIL AND G. FE. ITALIANO

FIG. 2. (a) G after the insertion of a new edge; (b) updates in the graph G' because of the new edge; the new
G is shown to the right; (c) updates in T because of the new edge; the path involved in the update is shown in bold;
the new T is shown to the right.

.., 6{ children of A®. Make A child of the previous parent of A and A child
of V'. If t = 0, delete A\(?). Notice that since 7 is rooted at a square node, A cannot be
the root of 7" and thus must have a parent.

The sequence of above transformations, plus the actual merging of the 3-edge-
connected components, is referred to in the sequel as path compression. Figure 2 shows
the updates needed in the graph of Fig. 1, as a result of the insertion of a new edge.

To implement the above rules, we need to support the following primitives on the
tree 7 during an InsertEdge operation:

split(p, e): Given a round node p and an edge e = (z, p), where z is a square node child
of p, split p into two round nodes p; and ps: the edges previously to the left [right] of

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 19

e are now incident to p; [p2]. Make p; and p, children of z, and z child of the former
parent of p (see Fig. 3(a)). If either p; or p, has no children, then delete it. Since p is a
round node, it cannot be the root; therefore, the parent of p is always defined.

merge(v): Given a square node v, whose parent is a square node itself, contract the edge
(v, parent(v)) (see Fig. 3(b)), and union the corresponding 3-edge-connected compo-
nents.

parent(v): Given any (round or square) node v, return its parent.

Notice that the primitive merge(v) is not applicable to the tree T itself since in
T each square node has a round parent. However, a split(p, e) produces two adjacent
square nodes as shown in Fig. 3 and, therefore, allows a primitive merge to be applied in

the resulting tree.
0l
X
split(p,e)
P Y
>] § iz
€))
0

. X

merge(x) []

(b)

FiG. 3

We are now able to describe our implementation of an InsertEdge(z,y) operation.
First we perform a Same3EdgeBlock(z, y) operation: if it returns true, then z and y are in
the same 3-edge-connected component and by Lemma 3.4 nothing need be done. Oth-
erwise, z and y are in different 3-edge-connected components. We proceed as follows.
Given 7, we first locate the path 7, ,. Then we perform path compression on =, , by
doing merge operations on the square nodes of 7, and split operations on the round
nodes of 7, ,. We do this as follows. Denote by A the least common ancestor of C(x)
and C(y) in 7. Set 8 = C(z) and v = parent(5). While v # X repeat the following
step:

20 Z. GALIL AND G. F. ITALIANO

If v is a round node, then set e = (3, v) and perform split(v, €). If v is a square node,
then perform merge(3). In both cases set y = parent(3).

Denote by 3; the square node child of A at which the preceding step stops. Now set
B = C(y) and repeat the same splits and merges in the path from C(y) to A. Similarly,
denote by (3. the square node child of X in this path. If A is a round node, then split
it as shown in Fig. 4(a). Otherwise,) is a square node; merge (1, B2, and A as shown
in Fig. 4(b). Notice that those two operations can be implemented by using a constant
number of merge and split primitives. In the following, we refer to the update of 7 after
an InsertEdge(u,v) operation as CompressPath(u,v, T).

FiG. 4

The following lemma shows how to perform efficiently any sequence of merge, split,
and parent operations.

LEMMA 3.5. Any sequence of p merge, split, and parent primitives on a tree with n nodes
requires a total of O(pa(p, n)) worst-case time.

Proof. To support efficiently these primitives, we use different data structures for
each node of 7. We represent square nodes as condensible nodes [36], which enable us to
merge two square nodes in O(a(p, n)) amortized time at the price of spending O(a(p, n))
amortized time to find the parent of a round node. The idea behind a condensible square
node is to group all the sibling round nodes into disjoint sets and to maintain those
disjoint sets under union and find operations. We do this as follows. By definition, the

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 21

children of each square node in 7 are all round nodes. Let v be any square node in
T, with children p1, p2, ..., pe, £ > 1. We maintain a set YF(v) such that the name of
UF (v) returns a pointer to v. Let p; be a child of v: instead of having an edge from p;
to v, we have an edge from p; to an item in the set UF (v).

We refer to [36] for the details of this method. It suffices to say that a merge(v)
operation corresponds to a union between disjoint sets UF (v) and UF (parent(v)), and
to a union of the 3-edge-connected components corresponding to v and parent(v). We
remark here that unioning disjoint sets L F (v) and UF (parent(v)) implies that the space
used by the item corresponding to v in UF (parent(v)) is left unused. This implies an
O(1) extra space per merge operation.

Finding the parent of a round node corresponds to a find operation. If for each
square node v € 7 we implement U F(v) by means of a fast set-union data structure
[33], each merge and parent primitive can be supported in O(a(p, n)) amortized time.

For splitting round nodes efficiently we use a similar data structure, which we call
expandable node, and which allows us to split a round node and to find the parent of a
square node in constant amortized time. The expandable node data structure has much
the same flavor as condensible nodes, but it is based upon set-splitting data structures.
We recall here that set-splitting data structures are able to perform find and split op-
erations on disjoint sets in constant amortized time [12]. Now we group all the sibling
square nodes into disjoint sets, and we maintain those disjoint sets under sequences of
split, and find operations. Let p be any round node in 7, with children vy, vs, ..., v,
¢ > 1. We maintain a set SF(p) containing ¢ items and such that the name of SF(p)
returns a pointer to p. Let v; be any child of p: instead of having an edge from v; to
p, we have an edge from v; to the corresponding item in the set SF(p). We implement
split(p, e) as follows. Let v be the square node child of p such that e = (v, p), and let u be
the square node parent of p. We perform the corresponding split operation in SF(p):
this creates two new round nodes p; and p2 and destroys p. To make p; and p, children
of v we union U.F (v) with two singleton sets. Finally we make v child of u by inserting an
edge from u to the item of UF (u) that round node p was pointing to. Therefore, splitting
a round node p corresponds to performing a split operation in SF(p) and at most two
union operations involving ¥ (v). Finding the parent of a square node corresponds to
a find operation in a set-splitting data structure.

Notice that due to the structure of 7, in which after each update every path alter-
nates between square and round nodes, there is no interaction between condensible and
expandable nodes, since only round nodes are subject to splits, and only square ncdes are
subject to merges. Each merge requires unioning two condensible nodes, while each split
can be performed by splitting an expandable node and by performing a constant number
of unions on condensible nodes. Each parent requires a find operation in either a set-
union or a set-splitting data structure. Therefore, by using condensible and expandable
nodes we are able to perform each sequence of p merge, split, and parent primitives on a
tree with n nodes in a total of O(pa(p, n)) worst-case time. a

Lemma 3.5 allows us to prove the following theorem.

THEOREM 3.6. The data structure supports any sequence of q Same3EdgeBlock and
InsertEdge operations on an initially 2-edge-connected graph with n vertices in a total of
O((g + n)a(g, n)) time. The space required is O(n).

Proof. A Same3EdgeBlock operation consists of performing two find operations in
disjoint sets and, therefore, can be performed in O(a(g,n)) amortized time. As for an
InsertEdge(x,y) operation, it requires (i) finding the path 7, , in 7, (ii) performing the
merging and splitting of square and round nodes in 7 ,, and (iii) unioning the disjoint

22 Z. GALIL AND G. E. ITALIANO

sets corresponding to the square nodes (3-edge-connected components) in 7, ,. Given
T, we can locate the path 7, , by first performing find(x) and find(y). This returns C(z)
and C(y), the two square nodes corresponding to the 3-edge-connected components
containing = and y, respectively. Then we trace the paths from C(z) to the root of T
and from C(y) to the root of 7, alternating among them one edge at the time. We stop
when we reach a node already visited. This requires 2|7, | parent primitives in the worst
case. Then we have to perform at most |7, | merges and splits along this path. We recall
that merge operations union all the 3-edge-connected components in 7, ,. Henceforth,
the whole operation can be implemented by using no more than 3|r; ,| merge, split,
and parent primitives. As a consequence of Lemma 3.5, it can be done in a total of
O(|4 4 g, n)) time.

The total time spent during a sequence of at most g Same3EdgeBlock and InsertEdge
operations is, therefore, O((q + T'(n))a(g, n)), where

T(n) <) 3|ay

(z,y)

is the total number of merge, split, and parent primitives performed during InsertEdge
operations.

We prove the claimed time bound by showing that T'(n) = O(n). Notice that the
path 7, ,, in 7 is a path between square node C(x) and square node C(y). Since any path
in 7 alternates between square and round nodes, 7., contains at least [|7g /2] + 1
square nodes (i.e., 3-edge-connected components of G). After we perform path com-
pression on 7 ,,, we are left with only one square node. Consequently, the number of
3-edge-connected components of G decreases by at least [|r, ,|/2]. Since at the begin-
ning G can have at most n 3-edge-connected components, and each time we perform
InsertEdge(x, y) we decrease this number by at least [|m;,|/2],

T(n) <) 3lmzy| = O(n).

(z,y)

As for the space complexity, we have to bound the size of the set-union data struc-
tures used to represent the 3-edge-connected components, and the size of the tree 7.
Since each 3-edge-connected component of G consists of at least one vertex, and any
two 3-edge-connected components are disjoint, the total space required by the set-union
data structures used to store the 3-edge-connected components is O(n). As for the size
of the tree 7, we bound the number of square and round nodes in 7. Each square node
of 7 uniquely corresponds to a vertex of G’ (i.e., to a 3-edge-connected component of
G), while each round node of 7 corresponds to a biconnected component of G'. Since
we have at most O(n) 3-edge-connected components in G, there can be at most O(n)
vertices and O(n) biconnected components in G'. Therefore, there can be at most O(n)
square and round nodes in 7. Since 7 has at most O(n) nodes, and each merge primitive
implies an O(1) extra space, 7 can be implemented using condensible and expandable
nodes in O(n) space as shown in [36]. O

4. Maintaining 3-edge-connected components of connected graphs. We now extend
the previous result to the case of connected (but not necessarily 2-edge-connected)
graphs. We start with a singleton vertex, and we would like to perform any intermixed
sequence of Same3EdgeBlock, InsertEdge, and AddVertex operations.

In this case, we maintain the bridge-block tree 7; of G. We recall that each node B
of 7; corresponds to a 2-edge-connected component of G, referred to as graph(B), and

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 23

each edge of 7; corresponds to a bridge of G. Since graph(B) is a 2-edge-connected
component of G, it is 2-edge-connected. We maintain for each node B of 7; the tree
T3(B) of 3-edge-connected components of graph(B) as defined in the previous section.

Thus, we maintain information about the graph G by using a tree of trees. Each
of these trees is rooted as follows. 7; is rooted arbitrarily at any node C, and 73(C)
is rooted arbitrarily at any square node. For each nonroot node B of T;, let (zp,yB)
be the bridge in G corresponding to the edge (B, parent(B)) in Ty, xg € B, yg ¢ B.
We root T3(B) at C(zp) (i.e., the square node corresponding to the 3-edge-connected
component containing vertex zg). Besides this data structure, we maintain also the 2-
edge-connected components of G by using the algorithm of Westbrook and Tarjan [36].

As in the previous section, let G’ be the graph obtained by shrinking each 3-edge-
connected component of GG into a super-vertex. Notice that this time G is not necessarily
2-edge-connected and, therefore, G’ is not necessarily 2-edge-connected. However, by
Lemma 2.2 there is a one-to-one correspondence between bridges of G’ and bridges of
G, and between 2-edge-connected components of G’ and 2-edge-connected components
of G. Consequently, 7; is the bridge-block tree of G’ as well, and given any 2-edge-
connected component B of G’, T5(B) is the block tree of B. We notice that combining
71 and all the trees 73(B) yields a tree 7 that resembles the block tree of G'. Indeed,
denote by 7 the tree obtained by plugging each tree 72(B) in place of the corresponding
node in 7;: the only difference between 7 and the block tree of G’ is that each bridge
(u,v) of G’ is represented by a simple edge (u,v) in 7, while there is a square node o
and edges (u, o) and (o, v) in the block tree of G’. Finally, we remark that Lemma 3.1
still holds for G’. As far as Lemma 3.2 is concerned, we have now that each biconnected
component of G’ consists of either a unique edge or a simple cycle.

We show how to perform the three operations. A Same3EdgeBlock(u,v) is carried
out as follows. Find the 2-edge-connected components of G containing u and v, say, B,
and B, by using the algorithm of Westbrook and Tarjan [36]. If B,, # B,, then v and v
are not even in a same 2-edge-connected component of G, and, therefore, they cannot
be in the same 3-edge-connected component of G, and we return false. Otherwise, u
and v are in a same 2-edge-connected component B = B,, = B, of G. We now perform
Same3EdgeBlock(u, v) on a 2-edge-connected graph as explained in the previous section.

To support an InsertEdge(u,v), we first find the 2-edge-connected components of
G containing vertices v and v, say, B, and B,. If B, = B, = B, then we perform
CompressPath(u, v, T3(B)) as shown in the previous section.

If B, # B,, let B, = By, Bs,...,B; = B, be the nodes in the path 7, , in T;
between B, and B, as they are met while going from B,, to B,. Each B; corresponds to
the 2-edge-connected component graph(B;) of G. For each B; let (z;,y;) be the edge
in G between graph(B;) and graph(B;1+1), 0 < ¢ < £—1. For1 < i < £ — 1 define
start(B;) = y;—1 and end(B;) = z;. Notice that for each 2-edge-connected component
graph(B;), 1 < i < £ — 1, start(B;) [end(B;)] is the vertex to which the edge in m, ,
between graph(B;_1) and graph(B;) [between graph(B;) and graph(B;+1)] is incident
to. For sake of completeness, define start(By) = u, end(By) = xo, start(Be) = ye—1,
and end(B;) = v. Denote by B, the least common ancestor of B,, and B, in 7; (see, for
example, Fig. 5).

The following lemma explains the updates needed in our data structure.

LEMMA 4.1. Let ; be the path in T(B;) between C(start(B;)) and C(end(B;)),
0 <1 < L. After the insertion of edge (u,v) in G, we have the following changes:

(i) All and only the vertices in Up<;<¢ {graph(B;)} become 2-edge-connected in G;

(ii) Fixi,0 < i < £ Let ug’), ugi), .. ,u,(,? be the square nodes in ;. All and

24 Z.GALIL AND G. FE. ITALIANO

(b)

FiG. 5. (a) A graph G = (V, E) bridges between vertices u and v are in bold; (b) the tree of the 2-edge-
connected components of G.

only the vertices in the 3-edge-connected components of graph(B;) corresponding to u&’),
u, ... ul) become 3-edge-connected in G.

Proof. Edge (u, v) introduces cycles in G that contain at least one vertex in graph(By),
graph(B1), ..., graph(By). Since these are the only new cycles introduced, all and only
the vertices in those 2-edge-connected components become 2-edge-connected as stated
in proposition (i).

The proof of proposition (ii) can be carried out along the same lines as the proof of
Lemma 3.4. Let V; 1,V ,...,V;, be the 3-edge-connected components of graph(B;)
before the insertion of edge (u,v). Let V/';,V/,,...,V/;, 1 < g < p be the 3-edge-
connected of graph(B;) corresponding to the square nodes of 72(B;) in m;, as they are
met while going from C (start(B;)) to C(end(B;)) in To(B;). Notice that C(start(B;)) =
V/, and C(end(B;)) = V;,. The insertion of edge (u,v) causes a new path outside
graph(B;) between V/; and V/ . By repeating the same argument given in the proof

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 25

of Lemma 3.4, it can be shown that all and only the vertices of graph(B;) contained in
71> Vi ..,V become 3-edge-connected. a

Let G"e“’ = G U{(u,v)}, and let (G™*)’ be the graph obtained by shrinking the
3-edge-connected components of G™¢¥ into one vertex. Once again, Lemma 4.1 gives
a way to compute (G™¢*)’ from G’. Consider the 2-edge-connected components of G’
obtained by shrinking the 3-edge-connected components of graph(B;), 0 < ¢ < £. Let
us refer to them as B}, 0 < ¢ < £. For each one of them we can repeat the same argument
given after Lemma 3.4. Fix 4, 0 < 7 < £. By definition of G’ all the paths between Vi’, 1
and V;, in G’ are given by q — 1 edge-disjoint simple cycles Pi15 P32 - s Pig—1 in B
suchthatV11 € pin, Vig € pig-1,and p; i1 Np;j ={V/;},2 <j < q—1. Eachp;;is

composed of two disjoint paths between V;; and V/ ,, say, pflj) and p(2) Furthermore,

the insertion of (u, v) in G implies that all and only the verticesin V/ , 1 < s < p,become

1,8?

3-edge-connected in G. Therefore, in (G™**)’ the vertices V;;,V;,, ..., V/, of G’ have

to be shrunk into one vertex V;. This destroys the previous 31mple cycles pij, 1 <j<
q — 1, and creates at most 2(¢ — 1) new simple cycles p(l) and p(z) 1<j<q-1,that
are all incident to V;. Furthermore, there is a new 31mple cycle in G’ consisting of all the
newly created vertices V/, V5, ...,V and edges (o, y0), (z1,¥1), - - -, (Ze—1, Ye—1), (u, v).

Because of Lemma 4.1 we have to perform the following updates in our data struc-
ture. First, all the nodes B;, 0 < i < ¢, have to be merged into one node B in 7; because
all the vertices in graph(By), graph(Bi), . . . , graph(B;) become now 2-edge-connected.
This can be done by using the algorithm of Westbrook and Tarjan [36]. Second, we
have to compute the tree 7;(B) of 3-edge-connected components of the new node B =
ByUB, U...UB,. We compute T3(B) starting from the trees 72(By), T2(B1), . . . , T2(Be)
as follows. For 0 < i < ¢, we perform CompressPath(start(B;), end(B;),T2(B;)). This
is correct because of condition (ii) of Lemma 4.1, and produces the new trees 7,*¢* (B;),
0 < i < 4. Denote by o; the square node of 7;*¢*(B;) which is the result of the path
compression that took place in 73(B;). Notice that o;, 0 < i < ¢, corresponds to the new
vertex V' in (G™*)’. We recall that B, is the least common ancestor of B, and B, in
T1. As said before, all the new vertices V; are now in a new simple cycle of (G™")": we
create a new round node p, make p a child of o, and make o)y1,...,00, 00,...,0x—1
children of p in 72(B) in this order. This preserves the same order as in the new simple
cycle created in (G™*)’. Since a;, i #), is the root of 7;***(B;), we do not need to
reroot any of these trees.

An AddVertex(u, v) operation inserts a new vertex v and connects it to v. We update
our data structure as follows. Let B, be the 2-edge-connected component containing v.
We create a new 2-edge-connected component B,, containing only vertex u and make it
child of B, in 7;. We initialize 75(B,) to be a tree with a singleton square root node,
and initialize a new 3-edge-connected component containing only vertex u.

THEOREM 4.2. There exists a data structure that supports any sequence
of q Same3EdgeBlock and InsertEdge and n AddVertex operations in a total of
O((q + n)a(g,n)) time. The space required is O(n).

Proof. We first analyze the space complexity of our data structure. Notice that we
start with a graph containing a single vertex. At the end of the sequence of operations,
we end up with a graph G with at most n + 1 vertices. Since G can have at most O(n) 2-
edge-connected components and bridges, 7; has size O(n). For each 2-edge-connected
component B; of G, denote by n; the number of vertices in B;. Since each vertex of G is
an at most one 2-edge-connected component, we have that) . n; = n + 1. By Theorem
3.6, the tree of 3-edge-connected components of B; has at most O(n;) nodes and edges.

26 Z. GALIL AND G. F. ITALIANO

As a result, all the trees in our data structure require

0 (Z n,-) =0(n)

space.

Each Same3EdgeBlock operation can be performed in O(a(q, n)) amortized time as
the following argument shows. Finding B, and B,, the 2-edge-connected components
of G containing and v, can be done in O(a(g, n)) amortized time [36]. If B,, # B,,, then
Same3EdgeBlock returns false and no further computation is required. If B, = B, = B,
performing Same3EdgeBlock on T(B) requires O(a(g, n)) amortized time by Theorem
3.6.

As for an InsertEdge(u,v) operation, the bridge-block tree can be updated in
O(a(g,n)) amortized time [36]. The update of the trees of 3-edge-connected compo-
nents T2(B;), 0 < i < ¢, requires

0] (z+§7‘,|7r,-|>

merge, split, and parent primitives. By applying exactly the same argument used in The-
orem 3.6, we obtain that the total number of such primitives during any sequence of
InsertEdge operations is O(n). As a result, the total time required to perform any se-
quence of InsertEdge operations is O((q+n)a(g, n)). Finally, each AddVertex operation
can be performed in O(1) time. o

Our data structure can be used even if we start with a nonempty graph Go = (V, Eo)
and allow O(|Vy| + | Eo|) preprocessing.

LEMMA 4.3. Given a graph Gy = (V, Eo) our data structure can be initialized in
O(|Vo| + | Eo|) time.

Proof. Compute in O(|Vy| + | Ep|) the 2-edge-connected components of Gy by using
the algorithm of Tarjan [32]. This gives also 77, the bridge-block tree of G, which can be
initialized in O(|7;|) = O(|Vy|) as a condensible and expandable nodes tree. For each
2-edge-connected component B of Gy, compute the 3-edge-connected components of
B and initialize the tree of 3-edge-connected components T3(B). This requires O(| B|)
time[16], and sums up to a total time of O(|Vy| + | Eq|). O

5. Concluding remarks. In this paper we have studied the on-line maintenance of
the 3-edge-connected components of an undirected graph during edge and vertex inser-
tions. We have proposed algorithms that support any sequence of q InsertEdge,
AddVertex, and Same3EdgeBlock operations on an initially connected graph with n ver-
tices in a total of O((n + ¢)a(g,n)) time. Recently La Poutré [23] extended this bound
to unconnected graphs.

We remark that the same O(a(g, n)) amortized bound holds also if we wish to main-
tain the names of the 3-edge-connected components of a graph subject to the following
operations.

3EdgeBlock(z): Return the name of the 3-edge-connected component containing ver-
tex x.

InsertEdge(z,y, A): Insert a new edge between vertices = and y and call A the new (if
any) 3-edge-connected component created by (z, y).

We have been able to achieve an O(m?/3) bound per operation for the fully dynamic
maintenance of the 3-edge-connected components of a graph [13] by using techniques

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 27

similar to the ones used for the fully dynamic maintenance of the 2-edge-connected com-
ponents [14].

One might ask whether there is any efficient partially dynamic algorithm for main-
taining on-line the k-edge-connected components of a graph, & > 4.

Acknowledgment. We are grateful to Dany Breslauer for many useful discussions.

REFERENCES

[1] G. AUSIELLO, G. E ITALIANO, A. MARCHETTI-SPACCAMELA, AND U. NANNI, Incremental algorithms for
minimal length paths, J. Algorithms, 12 (1991), pp. 615-638.
[2] G. AUSIELLO, A. MARCHETTI-SPACCAMELA, AND U. NANNI, Dynamic maintenance of paths and path expres-
sions in graphs, in Proceedings of the International Symposium on Symbolic and Algebraic Compu-
tation, Lecture Notes in Computer Science 358, Springer-Verlag, Berlin, 1989, pp. 1-12.
[3] E CHINAND D. HOUK, Algorithms for updating minimum spanning trees, J. Comput. System Sci., 16 (1978),
pp. 333-344.
[4] R. E. CoHEN AND R. TAMASSIA, Dynamic expression trees and their applications, in Proceedings of the
Second Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1991, pp. 52-61.
[5] G. DIBATTISTA AND R. TAMASSIA, Incremental planarity testing, in Proceedings of the 30th Annual Sym-
posium on Foundations of Computer Science, 1989, pp. 436-441.
[6] , On-line graph algorithms with SPQR-trees, in Proceedings of the 17th International Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer Science 443, Springer-Verlag,
Berlin, 1990, pp. 598-611.
[7] E. A. DINIC, A. V. KARZANOV, AND M. V. LOMONOSOV, On the structure of the system of minimal edge
cuts in a graph, in Studies in Discrete Optimization, A. A. Fridman, ed., Nauka, Moskow, 1976, pp.
290-306. (In Russian.)
[8] D.EPPSTEIN, G. F ITALIANO, R. TAMASSIA, R. E. TARJAN, J. WESTBROOK, AND M. YUNG, Maintenance of a
minimum spanning forest in a dynamic planar graph, in Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1990, pp. 1-11; J. Algorithms, to appear.
[9] S.EVENAND H. GaziT, Updating distances in dynamic graphs, Methods Oper. Res., 49 (1985), pp. 371-387.
[10] S. EVENAND Y. SHILOACH, An on-line edge deletion problem, J. Assoc. Comput. Mach., 28 (1981), pp. 14.
[11] G. N. FREDERICKSON, Data structures for on-line updating of minimum spanning trees, SIAM J. Comput.,
14 (1985), pp. 781-798.

[12] H. GaBow AND R. E. TARAN, A linear-time algorithm for a special case of disjoint set union, J. Comput.
System Sci., 30 (1985), pp. 209-221.

[13] Z. GALILAND G. F. ITALIANO, Fully dynamic algorithms for 3-edge-connectivity, in preparation.

[14] , Fully dynamic algorithms for edge connectivity problems, in Proceedings of the 23rd ACM Sympo-
sium on Theory of Computing, 1991, pp. 317-327.
[15] , Maintaining biconnected components of dynamic planar graphs, in Proceedings of the 18th Interna-

tional Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science
510, Springer-Verlag, Berlin, 1991, pp. 339-350.

[16] , Reducing edge connectivity to vertex connectivity, Sigact News, 22 (1991), pp. 57-61.

[17] F. HaRrARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[18] J. HorcROFT AND R. E. TARIAN, Dividing a graph into triconnected components, SIAM J. Comput., 2
(1973), pp. 135-158.

[19] T IBARAKI AND N. KATOH, On-line computation of transitive closure for graphs, Inform. Process. Lett., 16
(1983), pp. 95-97.

[20] G.F ITALIANO, Amortized efficiency of a path retrieval data structure, Theoret. Comput. Sci., 48 (1986), pp.
273-281.

, Finding paths and deleting edges in directed acyclic graphs, Inform. Process. Lett., 28 (1988), pp.
5-11.

[22] A.V.KarzaNovAND E. A. TIMOFEEV, Efficient algorithm for finding all minimal edge cuts of a nonoriented
graph, Cybernetics, (1986), pp. 156-162. Translated from Kybernetika, 2(1968), pp. 8-12.

[23] J. A. LA POUTRE, personal communication, 1992.

[21]

28 Z. GALIL AND G. F ITALIANO

[24] J. A. LA POUTRE AND J. VAN LEEUWEN, Maintenance of transitive closure and transitive reduction of graphs,
in Proceedings of the Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science 314, Springer-Verlag, Berlin, 1988, pp. 106-120.

[25] C.C.LINAND R. C. CHANG, On the dynamic shortest path problem, in Proceedings of the International
Workshop on Discrete Algorithms and Complexity, 1989, pp. 203-212.

[26] J. H. REIF, A topological approach to dynamic graph connectivity, Inform. Process. Lett., 25 (1987), pp.
65-70.

[27] H. ROHNERT, A dynamization of the all pairs least cost path problem, in Proceedings of the 2nd Annual
Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 182,
Springer-Verlag, Berlin, 1985, pp. 279-286.

[28] D. D. SLEATOR AND R. E. TARIAN, A data structure for dynamic trees, J. Comput. System Sci., 24 (1983),
pp. 362-381.

[29] P. M. SPIRA AND A. PAN, On finding and updating spanning trees and shortest paths, SIAM J. Comput., 4
(1975), pp. 375-380.

[30] R. TAMASSIA, A dynamic data structure for planar graph embedding, in Proceedings of the 15th Interna-
tional Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science
317, Springer-Verlag, Berlin, 1988, pp. 576-590.

[31] R. TamassIA AND E. P. PREPARATA, Dynamic maintenance of planar digraphs, with applications, Algorith-
mica, 5 (1990), pp. 509-527.

[32] R. E. TARIAN, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp. 146-160.

[33] R.E. TARIANAND J. VAN LEEUWEN, Worst-case analysis of set union algorithms, J. Assoc. Comput. Mach.,
31 (1984), pp. 245-281.

[34] R.E. TARIAN AND U. VISHKIN, An efficient parallel biconnectivity algorithm, SIAM J. Comput., 14 (1985),
pp. 862-864.

[35] J. WESTBROOK, Algorithms and data structures for dynamic graph problems, Ph.D. thesis, Department of
Computer Science, Princeton University, Princeton, New Jersey, October 1989, Tech. Report CS-
TR-229-89.

[36] J. WESTBROOK AND R. E. TARIAN, Maintaining bridge-connected and biconnected components on-line, Tech.
Report CS-TR-228-89, Department of Computer Science, Princeton University, Princeton, New
Jersey, August 1989; Algorithmica, to appear.

[37] D. M. YELLIN, A dynamic transitive closure algorithm, Tech. Report 13535, IBM Research Division, T. J.
Watson Research Center, Yorktown Heights, NY, 1988.

SIAM J. COMPUT. (©) 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 2945, February 1993 003

ON THE BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE DATABASE
SCHEMES*

HECTOR J. HERNANDEZ! anp KE WANG#

Abstract. Constant-time-maintainable database schemes are highly desirable with respect to constraint
enforcement, since it is possible to determine whether any of their consistent states plus an inserted tuple
is consistent in time independent of the state size. Several proper subclasses of constant-time-maintainable
database schemes are known to be bounded with respect to dependencies and hence very desirable with respect
to query answering. However, whether the whole class of constant-time-maintainable database schemes is
bounded is not known for sure.

In this paper, it is proven that the entire class of constant-time-maintainable database schemes is bounded
with respect to dependencies and thus very desirable with respect to query answering in the following cases:
(1) only cover-embedded functional dependencies appear as constraints; (2) only equality-generating depen-
dencies appear as constraints and the database scheme has a lossless join. In particular, it is shown that total
projections of representative instances can be computed via unions of projections of simple chase join ex-
pressions. Since it is known how to optimize these expressions, it is possible to compute total projections
optimally. These results show that the class of constant-time-maintainable database schemes is the largest
class of database schemes, which are highly desirable with respect to both constraint enforcement and query
answering. This class of schemes can be effectively recognized by known algorithms. The previously known
largest class of database schemes with these desirable properties is the class of independent database schemes,
which is a proper subclass of constant-time-maintainable schemes.

Key words. database, dependencies, query processing, constraint enforcement, representative instance,
boundedness

AMS(MOS) subject classifications. 68P15, 68Q

1. Introduction. Within the weak instance model [H2), [Vas), the maintenance prob-
lem [GY], [GW], [W] of a database scheme is the following decision problem: Given
a consistent state of the database scheme and a tuple to be inserted into the state, is
the modified state consistent with respect to the constraints imposed on the database
scheme? Database schemes for which this problem has “very fast” solutions are highly
desirable in practice.

The notion of constant-time-maintainability was proposed by Graham and Wang
[GW] to capture the intuition on “very fast” solutions to the maintenance problem.
Informally, a database scheme is constant-time-maintainable with respect to the con-
straints imposed on the scheme if its maintenance problem can be solved in time in-
dependent of the state size. Therefore constant-time-maintainable database schemes
are particularly desirable in a large and highly dynamic database environment. Also
in such an environment, we will consider only constant-time-maintainable schemes to
have fast solutions to constraint enforcement, because all other schemes are linear time
lower bounded [GW], [WG]. As mentioned in [GW], constant-time-maintainability gen-
eralized the notion of independence [GY], [S1], [S2], and the class of constant-time-
maintainable schemes properly contains the class of independent schemes when (1) only
functional dependencies appear, (2) functional dependencies and the join dependency

*Received by the editors May 15, 1990; accepted for publication June 5, 1991.

TTexas A&M University, College Station, Texas 77843-3112. Present address, Department of Computer
Science, New Mexico State University, Las Cruces, New Mexico 88003-0001.

fDepartment of Computer Science, Chonqing University, Chonging, Sichuan 63004, People’s Republic
of China. Present address, Department of Information Systems and Computer Science, National University
of Singapore, 10 Kent Ridge Crescent, Singapore 0511. The work of this author was supported by the Nature
Science Foundation of China for Young Scientists.

29

30 HECTOR J. HERNANDEZ AND KE WANG

of the database scheme appear, and (3) functional dependencies and inclusion depen-
dencies appear [AC2].

Recently, the recognition problem of constant-time-maintainable database schemes
was solved in several useful cases. An exponential time recognition algorithm for con-
stant-time-maintainable database schemes was given in [GW], [W], [WG] for each of
the following cases: (1) The database scheme cover embeds functional dependencies;
(2) functional dependencies plus the join dependency of the database scheme appear
as constraints; and (3) equality-generating dependencies appear as constraints and the
database scheme has a lossless join. An efficient recognition algorithm for constant-time-
maintainable database schemes was presented in [HC] when cover-embedding Boyce—
Codd Normal Form is assumed. Previous work on fast constraint enforcement can be
found in [BrV], [CH1], [CH2], [CH4].

In view of the importance and generality of constant-time-maintainable database
schemes, this paper investigates query processing in that class of database schemes. Un-
der the weak instance model, the X-total projection of the representative instance [M], [S1],
[S2], [Y] of a database can be used to answer a query defined on a set of attributes X;
intuitively, the representative instance of a database is an adequate and correct repre-
sentation of all the information that can be logically inferred from the database using
certain rules derived from the dependencies that the database must satisfy; the X -total
projection of the representative instance is the set of tuples in the representative instance
that do not contain missing information on X. Under this approach, it is highly desirable
for query processing to have a database scheme that would allow us to compute the X-
total projection of the representative instance via a predetermined relational expression
that is independent of the databases. This is possible exactly when the database scheme
is bounded with respect to the dependencies given [GM], [MUV].

Unfortunately, the problem of deciding whether a database scheme is bounded with
respect to dependencies is conjectured to be undecidable even for the case of functional
dependencies [MUV]. It has been shown that proving boundedness of database schemes
with respect to dependencies is difficult even for restricted cases [C], [CH1], [CH2],
[IIK], [HC], [MRW], [S2], [S3]. Therefore, defining some classes of database schemes
that are general enough and obviously bounded, like the one in [CM1], or proving the
boundedness of some meaningful classes of database schemes seems to be a reasonable
thing to do. The two largest classes of database schemes that can be effectively rec-
ognized and have an effective construction of relational expressions for computing total
projections with respect to functional dependencies are the class of independent schemes
[C], [TIK], [S3] and the class of independence-reducible database schemes [CH2]. A
general, sufficient condition for unboundedness of database schemes when functional
dependencies are considered was presented in [CH3]. A methodology for incrementally
generating bounded database schemes can be found in [CH4]. When only total pro-
jections on the universe of attributes are considered, Sagiv [S4] gave a necessary and
sufficient condition for computing total projections for lossless database schemes with
only tuple-generating dependencies.

The notion of boundedness has also been investigated in the context of optimiza-
tion of Datalog (the language of function-free Horn-clause) programs. A Datalog pro-
gram is bounded if it is possible to eliminate recursion from it [CGKV], [GMSV], [I],
[NS]. Boundedness of Datalog programs has been shown to be undecidable in [GMSV].
Some other decidable and undecidable results on boundedness of Datalog programs are
presented in [CGKV], [S4], [Var].

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 31

The class of constant-time-maintainable database schemes seems to be a subclass of
bounded database schemes. Several subclasses of constant-time-maintainable database
schemes are known to be bounded: Boyce-Codd Normal Form (BCNF) independent
database schemes [S2], independent database schemes [C], [IIK], [MRW], [S3], y-acyclic
BCNF database schemes [CH1], split-free independence-reducible schemes [CH2}, and
BCNF constant-time-maintainable database schemes [HC]. However, whether the whole
class of constant-time-maintainable database schemes is bounded with respect to depen-
dencies is not known.

In this paper we prove in §4 that the entire class of constant-time-maintainable
database schemes is bounded when only cover-embedded functional dependencies ap-
pear as constraints. In §5 we describe a method to construct the relational expressions
that compute total projections of representative instances. In particular, we prove that
unions of projections of simple chase join expressions [AC3], [C], a kind of extension
joins [H1], compute the total projections of the representative instances. The construc-
tion, however, takes exponential time in the size of the database scheme. Since it is
known from [AC3], [C] how to optimize these expressions to a minimal number of union
and join operations, we can compute total projections optimally (in that sense). Then in
§6 we show that the boundedness and construction of relational expressions obtained in
§84 and 5 also hold when only equality-generating dependencies appear as constraints
and the database scheme has a lossless join. In §7 we prove that we can compute X-
total projections via unions of projections of simple chase join expressions, for any X
included in any relation scheme in the database when a set of functional dependencies
and the join dependency of the database scheme are the constraints. In §8 we give our
conclusions.

2. Definitions and notation. In this section, we give most of the notation required
for the rest of this paper.

2.1. Basic definitions. We shall follow standard notation [Ma], [U] and only give
some nonstandard definitions here.

We fix a finite set U to be the universe of attributes (or columns) and fix R, the
database scheme, to be a collection of relation schemes { R, ..., R,} whose union is U.
A database state (or state) r on R is an assignment of finite relations to relation schemes of
R; we shall denote itasr =< r; = r(Ry),...,r, = r(R,) >. Atableau is a set of tuples
defined on U [ASU]. For each attribute A; € U, the domain of a tableau on A; consists
of countable many variables, and constants taken from dom(A;), the domain of A;. We
assume that all the tableaux and states are fyped, that is, the domains of a tableau or state
on different attributes are disjoint. A symbol is either a constant or a variable, and we say
that a symbol is unique if it is distinct from any other symbol appearing anywhere else.
We say that a tuple u[X], the restriction of tuple u onto attributes X, is total if u[A;] is
a constant for all A; € X, where X C U.

Assume T and T, are tableaux. A valuation function 0 : Ty — T is a function
from symbols in T} to symbols in T5, which is the identity on constants. A containment
mapping 6 : Ty — T, is a valuation function such that ¢t € T}, implies 8(t) € T5.

Letr =<r; =r(Ry),...,rn = r(R,) > be a state on R. We define Ty, the tableau
for state r, as follows: For each relation r; € r and for each tuple t € r;, there is a
tuple s in Ty corresponding to it; the tuple s is defined as follows: s[R;] = ¢, and for all
Aj € U — R;, s[A;] is a unique variable in Tr. Now, let 7; be a relation on R; € R. Then
ru r; shall denote the state < ry,...,7j_1,7; U r;., TjglyerssTn >

32 HECTOR J. HERNANDEZ AND KE WANG

2.2. Dependencies and chasing. The kinds of constraints considered here are (fyped)
equality-generating dependencies (egd’s), functional dependencies (fd’s), and the join de-
pendency (jd) X R [ABU], [BV], [F], [YP]. We shall use the term dependencies to refer
to the above-mentioned dependencies.

Associated with each dependency there is a dependency rule [ABU], [BV], [F], [YP].
Given a tableau T and a set of dependencies D, we can apply their associated rules to
T to infer additional information. These dependency rules are defined in [ABU], [BV],
[MMS]. CHASEpR(T) denotes the final tableau obtained from applying exhaustively to
T the rules for the dependencies in D; CHASEp(T) is also known as the chase of T
(with respect to D) [MMS].

Without loss of generality, we will assume in this paper that every fd has a single
attribute as its right-hand side. We define the closure of a set of fd’s F, denoted as F'*,
to be the set of fd’s that logically follow from F' [Ma], [U]. Anfd X — A is embedded in
arelation scheme R; if XA C R;. Asetof fd’s F'isembedded in R ifeachfd X — A€ F
is embedded in some R; € R. For a set of fd’s F' and a relation scheme R; € R, F|R;
denotes all fd’s from F that are embedded in R;. R is said to be cover embedding (or to
cover embed) a set of fd’s F if there exists a cover G of F, thatis, Gt = F'* such that G is
embedded in R; G is said to be an embedded cover of F'. R is said to preserve a set of fd’s
F if for any relation I defined on U, I satisfies F' implies X 7g (I) satisfies F', where 7r (I)
denotes the state < 7g, (I),...,7r,(I) > and X wg(I) = wg,(I) M --- X 7 _(I). Ris
said to have a lossless join with respect to a set of dependencies D if the jd X R logically
follows from D [ABU].

2.3. Simple chase join expressions and derivation sequences. Borrowing from [C],
in this subsection we define derivation sequences and simple chase join expressions, a
generalization of extension joins [H1].

Given a set of fd’s F, a derivation sequence (ds) of some relation scheme R; (with
respect to F') is a finite sequence of fd’s < Y1 — A4;,...,Y, — A, >,m > 0, that
satisfies the following conditions: Forall 1 < j < m,

oY, s A€ F;
oY, C R;A;--- Aj_l, and A]' & R;Ap--- Aj_l.

The ds is said to cover X if R;A;-- A, 2 X. Ads< Y, — Ay,....Y,, — A, >
that covers X is said to be nonredundant if for every Y; — A; with 1 < j < m, either
Aj € X or A; € Yy, for some k > j (otherwise, any fd that fails to satisfy this condition
is said to be redundant). Two ds’s of R; are said to be equivalent if they are identical up
to permutation of the fd’s in the sequences. Givenads < Y; — Aj,..., Y, — Ap >
of R; that covers X, if each fd Y; — A; is embedded in some relation scheme R;, then
we define the simple chase join expression (simple cje) E for the ds as E = wx(R; ™
Ty, 4, (R1) X --- M7y, 4. (Ry,)). Given a simple cje E and a state r on R, E(r) denotes
the evaluation of E after substituting every relation scheme R; in E with the relationr; €
r. It should be obvious that for every ds 7; of R; covering X, there is a nonredundant ds
w2 of R; covering X (obtained by removing redundant fd’s from ;) such that the simple
cje E; for m; and the simple cje E for 75 satisfy Ex(r) 2 E;(r) for every state r.

2.4. Weak instance and boundedness. Let r be a state on R, let I be a relation
defined on U, and let D be a set of dependencies. Then I is a weak instance for r with
respect to D if mg,(I) 2 r; for each R; € R and I satisfies D. r is said to be consistent
with respect to D if a weak instance exists for the state with respect to D [GMV], [H2],
[Vas]. The set of all consistent states for R with respect to D is denoted by CONS(R, D).
CHASEp(Ty) is called the representative instance for state r (with respect to D) [M], [S1],

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 33

[S2], [Y]. The X-total projection of the representative instance (with respect to D) for r,
denoted [X]R, is {t[X]|t € CHASEp(Ty) and t[X] is total}.

A database scheme R is bounded with respect to a set of dependencies D if for every
X C U, every X-total tuple in the representative instance of any consistent state r of R
with respect to D can be obtained in at most k applications of rules for dependencies in D
to tableau Ty for some constant k > 0 [GM], [MUV]. It has been shown in [GM], [MUV]
that a database scheme is bounded with respect to D if and only if for any X C U, the X-
total projection of the representative instance for any consistent state can be computed
by a predetermined relational expression that is independent of the state.

2.5. Constant-time-maintainable and independent schemes. The maintenance prob-
lem (for database states) of R with respect to a set of dependencies D is the following
decision problem: Let r be a consistent state of a database scheme R with respect to D
and assume we insert a tuple ¢ into r, € r. Isr U {t} a consistent state of R with respect
to D? We say that < r, ¢t > is a yes-instance of the maintenance problem of R with re-
spect to D if rU{¢} is consistent with respect to D; otherwise, < r, t > is a no-instance of
the maintenance problem of R with respect to D. An algorithm solves the maintenance
problem of R with respect to F' if for every instance < r, ¢ >, the algorithm returns a
yes answer exactly when < r, t > is a yes-instance of the maintenance problem of R with
respect to D. We call such an algorithm a maintenance algorithm.

Following [GW], we define constant-time-maintainable database schemes as follows.
Suppose there is a maintenance algorithm A that solves the maintenance problem of R
with respect to a set of dependencies D. Let < r,t > be an instance of the maintenance
problem of R with respect to D. Assume that r is stored on a device that responds to
requests of the form < R;, ¥ >, where R; € R and V¥ is a Boolean combination of
formulas of the form A = ‘a,” where A € R;, a is an element of the domain of A that
appears in either the inserted tuple ¢ or the tuples previously returned, as defined below.
The device responds to the request < R;, ¥ > by returning, if it exists, an arbitrary tuple
from r; € r that satisfies ¥. Now, we define # A (r, t) to be the number of requests of the
above form made by A on < r, ¢t >. We say that A solves the maintenance problem of R
with respect to D in constant time if there is a constant integer k > 0 such that k > #A
(r, t) for all instances < r, t > of the maintenance problem of R with respect to D. A
database scheme R is said to be constant-time-maintainable (ctm) with respect to D if
there is a maintenance algorithm that solves the maintenance problem of R with respect
to D in constant time [GW]. The reader should note that the definition suggests that
constant-time-maintainability is cover insensitive; that is, for any two equivalent sets of
dependencies, say, D, and D,, R is ctm with respect to D; if and only if R is ctm with
respect to Ds.

A database scheme is independent with respect to a set of dependencies D if each
relation in a state satisfies its projected dependencies implies that the state is consistent
with respect to D [GY], [1IK], [S2].

The following example illustrates these definitions.

Example 1. Let R = {CAZ,CZ} and F = {CA — Z,Z — C}. This is the classic
City, Address, Zip database scheme. R is not independent with respect to F because
Z — C'is embedded in both CAZ and CZ. We now show that R is ctm with respect to
F. Suppose that we have a consistent state r with respect to F' and that we insert a tuple
t into either the CZ relation or the C AZ relation. We now prove that we need to issue
at most three requests of the above form to verify whether r U {t} € CONS(R, F).

Case 1. Assume t =< c, z > is to be inserted into the C'Z relation. To verify whether
Z — C is satisfied by the updated state, we need to issue the requests < CZ, Z =‘2">

34 HECTOR J. HERNANDEZ AND KE WANG

and < CAZ,Z =“2’> to retrieve from r any tuple of the form < ¢;,2 > or < ¢3,a, 2z >.
Then the consistency of r implies that the updated state is consistent if and only if none
of these tuples is returned (i.e., they do not exist in r) or the returned tuples have the
constant ¢ on column C (i.e., if one tuple is returned, then ¢; = ¢ or ¢; = ¢; if two tuples
are returned, then ¢; = cand c2 = ¢).

Case 2. Assume t =< ¢, a, 2z > is to be inserted into the CAZ relation. To verify if
CA — Z is satisfied by the updated state, we need to issue the request < CAZ,C =*¢
AA =‘a’> to retrieve from r any tuple of the form < ¢, a, 2’ >; if a tuple is returned with
Z' # z, the updated state is not consistent with respect to F. Otherwise, we still have
to check for a possible violation of Z — C. To verify this, we need to issue at most two
requests, as it is shown in Case 1 above.

The above discussion shows that at most three requests are required to solve the
maintenance problem of R with respect to F. Therefore R is ctm with respect
to F. |

3. An equivalent definition of ctm schemes. It is difficult to work directly with the
notion of constant-time-maintainability as it was defined above, because the notion is
concerned with the existence of some kind of algorithm. To alleviate that problem, an
equivalent definition of constant-time-maintainability, which is based on a specific com-
putation, was given in [W]. We now present this alternative definition.

Assume that F is a set of fd’s embedded in R such that F|R; is a cover of F*|R;
for every R; € R. Let r be a state on R and let u be a tuple on U. We say that the pair
T=<1v;,X - A>canexpand uif X — A € F|R,;, v; is a tuple in r; € r for some
R; € R, and u[X] = v;[X]. Sometimes, we just say that v; (or X — A) can expand u
if we are not concerned with the other element. Assume that 7 =< v;, X — A > can
expand u. Then 7(u), the result of expanding u by 7, is the tuple defined on U as follows:
7(u) is u, except that 7(u)[A] is v;[A4] if u[A4] # v;[A]. If 7(u) # u, we say that 7 can
strictly expand u. Let x =< 71,...,Ty >, wherefor 1 < j <m, 7; =< p;, X; — A; >
and X; — A; € F|R, for some R; € R, and p; is a tuple from r; in r. We say that x can
(strictly) expand u if 1, can (strictly) expand u, and for 2 < j < m, 7; can (strictly) expand
Tj—1(Tj—2(- - - 11 (u) - - -)). We also say that the sequence of fd’s < X; — Ay,..., X, —
Ay, > can (strictly) expand u in the above case.

Given a state r € CONS(R, F) and a total tuple v on V' C U, let augy (v) be the
tuple on U defined as follows: augy (v)[V] = v and for each B € U — V, augy (v)[B] is
a unique variable. The expansion computation of v in r (with respect to F') is defined as
follows [W]:

Let 7 be augy (v).
Repeatedly expand v by a tuple in r and an fd in F' until either

(i) no more changes can be made to @ or
(ii) some constant is replaced by a different constant.

It was proven in [W], [WG] that the expansion computation has finite Church-
Rosser-like properties, provided that for every R; € R, F|R; is a cover of F*|R;, which
has been assumed at the beginning of this section. In particular, the computation stops

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 35

after at most |U| strict expansions, and the condition (i) or (ii) on which the computa-
tion stops and the final tuple @ if it stops at (i) are unique for every input r and v. If
the expansion computation of v in r stops at condition (i), v is said to be expansible in r
(with respect to F'), and the final universal tuple @ is called the expansion of v in r (with
respect to F'); otherwise, v is said to be not expansible in r (with respect to F'), and we
say that the expansion computation of v in r reveals a contradiction. Obviously, for any
state r € CONS(R, F), every tuple in r is expansible in r.

The following theorem gives another equivalent definition of ctm schemes, which
we shall use for the rest of this paper.

THEOREM 1. Let R be a database scheme, and let F be a set of fd’s embedded in R
such that F|R; is a cover of F*|R;, for every R; € R. Then R is ctm with respect to F
if and only if for every instance < r,u > of the maintenance problem of R with respect to
F,r U {u} ¢ CONS(R, F) implies u is not expansible in r with respect to F.

Proof. See the proof of Theorem 3.3 and Definition 3.1 in [W]. (For a full proof see
Thm. 4.2.3 in [WG]. The assumption that for any R; € R, F|R; is a cover of F*|R; is
essential in that proof.) 0

4. Ctm schemes are bounded with respect to cover-embedded fd’s. Throughout this
section we assume that (1) F' is a set of fd’s embedded in R; (2) F|R; is a cover of
F*|R,; for every R; € R; and (3) every fd in F has a single attribute on the right-hand
side. Any set G of cover-embedded fd’s can be transformed into a set satisfying (1)
and (3) above in polynomial time [BH], [GY]. The transformation into a set satisfying
(2) takes exponential time in general. For any such cover F of G, CHASEFr(Ty) and
CHASEg(Ty) are identical up to the renaming of variables [MMS], and therefore they
have identical total projections. Thus our results in this section, about boundedness, and
in §5, about the computation of total projections, are actually those for cover-embedding
ctm schemes.

In this section, we shall prove that the constant-time-maintainability of R with re-
spect to F' implies the boundedness of R with respect to F'. We prove this fact by showing
how to chase any consistent state of a ctm database scheme in a particular way. In §5,
we show how to construct the relational expressions that compute the total projections
of representative instances.

4.1. The expansion of r. Letr € CONS(R, F). We define
Ty = {a|u is the expansion of in r (with respect to F'),u € r;,7; € r},

where we assume that all the variables in Ty are unique. We say that T is the expansion
of r (with respect to F'). Observe that T} is a tableau in a chase of Ty with respect to
F'. We shall prove that if R is ctm with respect to F, then we can obtain CHASEr(Ty)
from Ty without equating any variable in T3 to a constant from r. This shall imply that
for any X C U and for any r € CONS(R, F), [X|£ = {t[X]|t € Ty and t[X] is total}.
Then the boundedness of R with respect to F' follows because every X -total tuple in T3
can be obtained by at most |U| strict expansions, each being an application of an fd-rule
for some fd in F'. We are going to prove this claim in §4.3 by induction on the number
of applications of fd-rules to the tableau. The following subsection shall constitute the
basis of such proof.

4.2. Basis of the proof of the main lemma. Assume the following for the rest of this
subsection:
e R is ctm with respect to F, where F' is as assumed above,
e r ¢ CONS(R,F), and

36 HECTOR J. HERNANDEZ AND KE WANG

o There are two tuples @ and v in Ty, and a nontrivial fd X — A € F*|R; for
some R; € R such that 4[X] = 9[X] and 4[A] # v[A]. Furthermore, we assume
that % and ¥ come from tuples « and v in r, respectively, that is, @ is the expansion
of w in r (with respect to F') and ¥ is the expansion of v in r (with respect to F).

We shall prove that both @[A] and ©[A] are variables.

Let V = {B|B € R; and @4[B] = 9[B]}; notice that R; — V is nonempty since
A € R, — V; also observe that X C V and @[V] are constants because by construction
of Ty all the variables in @ and ¥ are distinct. Let 2z be a tuple on R, defined as follows:
z[V] = a[V] and for all B € R; — V, 2[B] is a unique constant. We are going to prove
(1) z is expansible in r, and hence, by Theorem 1, r U {z} is consistent with respect to F,
and (2) 9[A] and @[A] are variables.

LEMMA 1. z[V] is expansible in r.

Proof. This follows from @[V] = z[V] and @[V] is expansible in r. O

We now prove that the expansion computation of z[V] in r does not equate to a
constant any unique variable on columns R; — V of augy (2[V]). Therefore, if we re-
place these unique variables with the unique constants in 2[R; — V], the same expansion
computation shows that z is expansible in r.

LEMMA 2. Let Zv be the expansion of z[V]inr. LetY = {B|B € U and zv|B] is a
constant}.Y N (R; — V) = 0.

Proof. We first prove that a[Y] = zv[Y] = 9[Y].

Letnn =<y1,Y1 — By >,...,1=<u,Y; — B; >, 1 >0, be a sequence that can
strictly expand augy (2[V]) in an expansion computation of z[V] in r. From Lemma 1,
no contradiction is revealed in this expansion.

Let z; = 7;(--- (11(20)) - -), for 1 < j < I, where 2o = augy (2[V]). Itis not difficult
to prove that for 0 < j <l and for any C € U if 2;[C] is a constant, then a[C] = 2;[C].
This implies a[Y] = zv[Y]. Similarly, we can prove that for 0 < j <l and foranyC € U
if z;[C] is a constant, then ¥[C] = z;[C]. This implies 5[Y] = zv[Y].

Now assume that there is B € Y N (R; — V). Then B ¢ V. But since @[Y] = 9[Y],
@[B] = v[B] and thus, by definition of V, B € V. This is a contradiction. O

Now we prove that z is expansible in r, that is thatr U {2} € CONS(R, F).

LEMMA 3. (a) z is expansible in r, and (b) r U {2z} € CONS(R, F).

Proof. From Lemma 2, the expansion computation of z[V] in r does not equate to a
constant any unique variable on columns R; — V' of augy (2[V]). Therefore, by replacing
each unique variable of augy (2[V]) on column A, A € R; — V, with the unique constant
z[A], the same sequence of expansions shows that z is expansible in r.

Part (b) follows from part (a) above and Theorem 1. O

The following lemma says that if we can apply an fd-rule to two tuples in 7§, then
the fd-rule equates only variables.

LEMMA 4. Let 4, v, and A be as defined above. u|A| and ©[A] are variables.

Proof. Without loss of generality, we assume that ¥[A] is a constant. If u[A] is a
constant, then by assumption that @[X] = 9[X] and @[A] # v[A],r € CONS(R, F),
which is a contradiction to our assumption about r. Hence u[A] must be a variable. Let
z and V be as defined above. We now show that z and v violate the fd X — A. Since
A ¢ V (because u[A] # ©[A]), 2]A] # [A] and both are constants by definition of z;
thus X — A isviolated by these two tuples, because z[X] = 5[X] by definition of 2. This
impliesr U {z} ¢ CONS(R, F'). But this is a contradiction to Lemma 3. Therefore
both ¥[A] and @[A] must be variables. 0

4.3. Proofof main lemma. We now want to prove that in any chase of 7y no variable
is replaced by a constant, provided the database scheme is ctm. Before proving this, we

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 37

need to introduce the following notation. Let T be a tableau, and let T be the triple
< u,v,X — A >, where u and v are tuples defined on U and X — A is a nontrivial
fd in F*|R;, for some R; € R. We say that 7 is an fd-rule for T (with respect to F) if u
and v are tuples in T and u[X] = v[X]. If u[A] # v[A], we say that 7 is a strict fd-rule
for T. 7(T') denotes the tableau that results by equating u[A] with v[A]. We say that the
sequence 7y, . . . , T, Of triples of the above form is a sequence of (strict) fd-rules for T if T
is a (strict) fd-rule for T', and for 2 < i < m, 7; is a (strict) fd-rule for ,_; (- - - (7. (T')) - - -).

LEMMA 5. Let R be a ctm database scheme with respect to F. Then for all r €
CONS(R, F), there is no finite sequence of fd-rules for Ty (the expansion of r) that re-
Pplaces a variable in Ty by a constant from r.

Proof. We prove it by induction on the length, k, of any sequence of fd-rules for Ty.

Basis. k = 1. By Lemma 4, there is no sequence of fd-rules for 7y of length at most
1 that replaces a variable of 7§ by a constant from r.

Induction. k > 1. Assume that for all r € CONS(R, F), there is no sequence of
fd-rules for T¢ of length at most ¥ = m — 1 > 1 that replaces a variable of Ty by a
constant from r. We show the lemma holds for £ = m. In fact, if it does not hold for
k = m, we can construct a consistent state r, that will let us show that there is a sequence
of fd-rules for T3 , the expansion of r;, of length no more than m — 1 that replaces a
variable in T¢, by a constant from r;, contradicting the inductive hypothesis.

Letr € CONS(R,F) and let Ty be the expansion of r. We assume there is a
sequence of fd-rules 1, =< uy,v1, X1 — Ay >, 19 =< Uz, V2, X2 — Ay >, .., Ty =<
Um, Umy Xm — Am >, for Ty, in which 7, is the first fd-rule that replaces a variable
in T§ by a constant from r. Without loss of generality, we further assume that each fd
X; — Ajisin F,for 1 < j < m, and u,,[A,,] is a constant and v, [A,,] is a variable. By
the inductive hypothesis, all of the other fd-rules equate only variables.

We now construct a state r, that shows that the sequence ; - - - 7,,, does not exist.
Let us consider the first fd-rule, m, =< u;,v1,X; — A; >, and assume without loss of
generality that X; A; C R;, forsome R; € R. Thenu,[X;] = v1[X1], v1 and u; are both
in T, and we may assume u, [A;] # v1[A41]; otherwise, 73 - - - 7,,, Will be a sequence of fd-
rules for T of length at most m — 1 that replaces the variable v,,[A,,] with the constant
Um[Am], contradicting the inductive hypothesis. From the inductive hypothesis, u1[A;]
and v; [A4,] are variables. Let V = {B| B € R, and u;[B] = v;[B]} and let z be the (total)
tuple on R; defined as follows: 2[V] = u;[V] and 2[R; — V] are all unique constants (i.e.,
new constants that are not in r). Then from Lemma 3,r; =r U {2} € CONS(R, F).

We now expand every tuple in Ty by the tuple 2 (and fd’s in F*|R;) as much as
possible and let the final result be 7”. (Note that we cannot assume that Ty and T” are
the same, because z, which contains unique constants, is not in r, and Ty is the expansion
with respect to only the tuples in r.) Furthermore, let 2’ be the expansion of z in the
state r, and let T) = T U {2'}. In the following, we show that T} is identical to Ty, up to
renaming of variables and that < 7, ..., 7, > is a sequence of fd-rules for T; (hence for
Ty,) that equates a variable with a constant, where 7; =< u}, v}, X; — A; >,u; € Th
originates from u; and v; € T originates from v;, 2 < j < m. The proofs are stated as
the following claims. (See the appendix for the proofs of these claims.)

CLAM 1. T is the expansion of r1. That is, T\ is identical to the Ty: up to the renaming
of variables.

CLAIM 2. u1[A1] and v1[A1] are both replaced by the constant z[A1], that is, the effect
of the first fd-rule has been enforced when computing T, from Ty . (Note that this is different
from saying that u;[A;] and vy[A,] are equated directly in the computation of Ty from Ty..
Thus, the expansion T contains no repeated variables still holds.)

38 HECTOR J. HERNANDEZ AND KE WANG

In the following claim, we prove that there is a sequence of fd-rules 7 =< u},v],
X, — Ay >, ..., 7, =<ul,, v, Xm — A, > for TV that is “parallel” to the sequence
Ti,...,Tm for Tf in the sense that u; and u; come from the same tuple in 73 and so do
v; and v;. This is intuitively correct because the computation of 7" from Ty does not
make distinct any repeated occurrences of symbols; therefore we can always apply the
fd’sin 7y, ..., Tm to the corresponding tuples in T”. A formal argument is given in terms
of containment mappings by the following claim.

CLAIM 3. There are mappings 0y, . .. ,0,—1 such that forall0 < j <m —1,

(i) 6; is a containment mapping from 7;(- - - (to(Tg)) - - +) to T} (- - - (1o(T")) - - -);

(ii) 0; satisfies the condition that any variable § is mapped to either itself or to the unique
constant from z[R, — V| that replaced § when we computed T', where for1 <1 < j, 7/ =<
01—1(w1), 61—1(v1), X; — A; >, and 7o and 7} are defined to be such that 7o(Ty) = Ty and
(T =T.

We now complete the proof of the lemma by showing that there is a sequence of fd-
rules for T (hence for T = Ty,) of length no more than m — 1 that replaces a variable
by a constant. Let us consider 7,,, =< Um,Um, Xm — A, > and 6,,_; defined as
above. Recall that u,,[A,,] is a constant from r and v,,,[A,] is a variable. Since 6,,_; is a
containment mapping, we have that 6,,_1(um)[Xm] = Om—1(vm)[Xm], because um [Xm]
= Uy [Xom]. Then from part (ii) of Claim 3, 6,,,—1 (v,) [Am] must be the variable v,,[A,];
otherwise 0,,,—1(vy,) and 6,1 (uy,) will violate X,, — A,,, which is a contradiction
tor; € CONS(R,F). Therefore, applying 7/, to 7/._1(--- (74(T")) - -) equates the
variable v,,[A,,] to the constant u,,[A.,], where 7/, =< Om—1(Um), Om—1(Vm), Xm —
A,, >. Then, Claims 1 and 2 and the above discussion show that r; is a consistent state
for which < 73,73,...,7;, > isasequence of fd-rules for Ty, of length at most m —1 that
equates a variable with a constant. But this is a contradiction to the inductive hypothesis
of the lemma.

This completes the induction and the proof of this lemma. |

4.4. Main theorem. The following theorem follows from the way we compute Ty,
Lemma 5, and the definition of bounded schemes.

THEOREM 2. Let R be a ctm data base scheme with respect to F. Then R is bounded
with respect to F.

5. Computing [X]E by simple chase join expressions. We now show that the unions
of simple cje’s that compute the total projections of representatives instances can be
constructed in exponential time in the scheme size.

We first give a lemma stating a close relationship between the sequences of fd’s used
in the expansion computations and derivation sequences.

LEMMA 6. Let R be a database scheme, and let F be a set of functional dependencies.
Let r be a consistent state on R with respect to F and let t be a total tuple on some R; €
R such that t is expansible in r with respect to F. If some sequence of fd’s < X; —
A1, ..., X — A >, m > 0,in F strictly expands augy (t) in an expansion computation
of t in r and the expanded tuple has constants on X C U, then < X; — A1,..., Xm —
A,, >isadsof R; covering X.

Proof. The lemma follows immediately from the definitions. 0

Unlike independent schemes, when ctm schemes are considered, one fd may be
embedded in more than one relation scheme, as illustrated by Example 1. To deal with
such a multiple embedding situation, we define for any set of attributes W C U

I W l=U{rw(R;)| R; € R,W C R;}.

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 39

Thatis, | W | is the relational expression that is the union of projections on W of all
the relation schemes that embed W.

In fact, Lemma 5 and the way the expansion Ty was computed in the last section
suggest a method to extract the relational expression that computes the total projections
of representative instances. Given a consistent state r with respect to F' and a subset
X C U, let tbe a tuple in [X]£. From the result of the last subsection, t = #[X] for
some tuple ¥ in Ty, where @ is the expansion of some tuple v in some 7, € r. From
Lemma 6, let < X; — Ay,...,Xm — Ay, >,m > 0, be the ds of R, covering X that
strictly expands augy (v) in the expansion computation of v in r with respect to F'. We
define the expression E = mx(R, X| X1A; [X .- X| X, A, |). Clearly, from the
way ¥ is computed, we have t € E(r). By Theorem 5 in [MUV], E(r) C [X]E. Itis not
difficult to see that we can transform the expression E into a union of simple cje’s for
the ds < X; — A,,...,X,, — A,, >, in which each simple cje corresponds to a choice
from the relation schemes embedding the fd’s in the ds.

From the above discussion, the union of all simple cje’s for all ds’s of R;’s covering X
produces exactly the X - total projection of representative instances. Hence we have an
algorithm to compute the X-total projections for consistent states of any ctm database
scheme R with respect to a set F' of embedded fd’s: For each R; € R such that R;F 2 X,
find all nonequivalent and nonredundant ds’s of R; covering X. The ds’s are of the form
< X1 — Ao, X — Ap >, m > 0, where X; — A; € Fforalll < j < m.
For each of these ds’s, construct the union of simple cje’s E for it as above. The union
of all these E’s is an expression for computing the X-total projection of representative
instances. The following theorem is a consequence of the above discussion.

THEOREM 3. Let R be a ctm database scheme with respect to F, where F'is a set of fd’s
embedded in R.. Then for any X C U and for any consistent state r of R, [X|§ , the X -total
projection of the representative instance of r, can be computed with a union of projections
onto X of simple cje’s that cover X.

By an algorithm given in [AC3], [C], we can optimize the unions of simple cje’s
obtained above in polynomial time of size of these expressions. The returned expression
is minimal both in the number of subexpressions and in the number of join operations
[AC3], [C]. However, the algorithm given above does not suggest an efficient way of
doing it, since in general, there may be an exponential number of simple cje’s. As shown
in [AC1], [1IK], when independent schemes are considered, for each X C U and each
R; € Rsuchthat R} D X, there isjust one “maximum” simple cje of R; covering X that
has to be considered. This is not true of ctm schemes because there is no such maximum
simple cje, as shown below. We usually examine all simple cje’s for all the combinatorics
of derivations for each R; € R. Let us consider the following example.

Example 2. Let R = {R,(ID), R2(IC),R3(CD)}and F = {I - D,I — C,C —
I,C — D}. This is a Course-Instructor- Department database scheme. It is not difficult
to see that R is not independent with respect to F. However R is ctm with respect to F;
Example 1 in [HC] shows this fact. To compute the C D-total projection of representative
instances, for example, we need to consider the following ds’s that cover CD: the empty
ds<>o0of R3, < C - D >and< I —- D >of Ry, and < I — C > of R;. Their
corresponding simple cje’s are E; = R3, E; = mop(R2 X R3), E3 = mep(Re M Ry),
and E4 = mop(R1 X Ry). Observe that E; and E3 are incomparable!. In particular,
let r; and r; be the consistent states shown in Table 1. It is easy to verify that E(r;) D
E3(l‘1) and Eg(l‘z) D) Eg(l‘g).

1E and E’ are incomparable if neither E C E’ nor E’ C E holds, where E 2 E'(E D E') if and only if
E(r) 2 E'(r)(E(r) D E'(r)) for every consistent state r.

40 HECTOR J. HERNANDEZ AND KE WANG

TABLE 1
States for Example 2.
T T2
I C D Tag I C D Tag
i c Ra 7 c Ra
c d R3 % d Ry

The reader may also note that < C' — D > and < I — D > both are minimal ds’s
of R; covering CD in the terms of [C], and both are minimal derivations of C D from R,
in terms of [IIK], and neither is “embedded” in the other.

Then from the above we get the expression

R3U WCD(Rz X R3) U WCD(Rg X Rl) U 7I'CD(R1 X Rz),

which is equivalent to R3 U mop(R2 X R;).

It is interesting to note that the polynomial constructions of algebra computing X-
total projections for independent schemes [AC1], [I1IK], [S2] follow immediately from
the uniqueness property of independent schemes and our results for ctm schemes. When
independent schemes are considered, the problem of combinatorics of derivations dis-
appears because at most one ds has to be considered for each relation scheme, and each
term | X;A; | becomes 7x, 4,(R;;) for the unique relation scheme R;; that embeds the

Alternatively, to compute the total projection [X]§ for ctm schemes, we may first
compute the expansion Ty of r using the expansion computation as a subroutine. This
way we can compute total projections in linear time (in the state size) without predeter-
mining any relational algebra expression, assuming each strict expansion is charged one
unit of time. One advantage of this alternative is that the expansion Ty, once computed,
can be used for answering all queries until state r is updated next time, and all we have to
do for each additional query is a total projection operation on 7. Another advantage is
the uniformity of enforcing constraints and processing queries. The expansion computa-
tion is all we need for both kinds of transactions. This method is particularly meaningful
when queries are more often imposed than updates and the universe of attributes is not
very large.

6. Computing [X|]r with respect to egd’s. In this section, we prove that if the con-
straints considered is a set of egd’s and the database scheme has a lossless join with re-
spect to the constraints, then the database scheme is bounded if it is ctm. The following
theorem is due to Wang and Graham [W], [WG].

THEOREM 4. Let R be a database scheme, let D be a set of egd’s on U such that the
scheme R has a lossless join with respect to D, and let G be the embedded fd’s implied by
D. Then R is ctm with respect to D if and only if the following statements hold.

1. Gis a cover of D;
2. R is ctm with respect to G.

The following is a corollary to Theorem 4 above.

THEOREM 5. Let R be a database scheme and let D be a set of egd’s on U such that
the scheme R has a lossless join with respect to D. If R is ctm with respect to D, then

1. R is bounded with respect to D;
2. A relational algebra expression for computing total projections of representative in-
stances can be constructed in exponential time in the number of attributes.

Proof. Assume R is a ctm database scheme with respect to D. Let G be a cover of the
embedded fd’s implied by D. We can find G by enumerating all fd’s and selecting those

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 41

logically implied by D. From part (1) of Theorem 4 and the cover-insensitive property
of total projections, for every consistent state r with respect to D, and for every X C U,
[X]P = [X]§. Then from part (2) of Theorem 4, R is ctm with respect to G. Thus,
the method in the last section for computing [X]§ can be used to compute [X]Z as well.
Then the theorem follows from the results in that section. 0

A useful case to which the above results can be applied is when D is a set of fd’s and
the scheme R has a lossless join with respect to D.

7. Computing [X|r with respect to fd’s and X R. When D = F U {X R} is given
as the constraints and X is taken from a single relation scheme, our method to compute
the X-total projection with respect to a set of embedded fd’s F' can also be used.

The following lemma is Theorem 5 in [GW] (or Thm. 5.4.1 in [WG]).

LEMMA 7. Let R be a ctm database scheme with respect to D = F U {X R}, where F
is a set of fd’s. Let G be the set of fd’s implied by D. Then R cover embeds G.

From the above lemma, we have the following result.

THEOREM 6. Let R be a ctm database scheme with respect to D = F U {}X R}, where
F is a set of fd’s. Let G be the set of £d’s implied by D and let H be an embedded cover of
G. Then forany r € CONS(R, D), and forany X C R;,R; € R, [X|P = [X]¥.

Proof. By Lemma 7, H U {}X R} is equivalent to F' U {} R}. Since the chase

process is cover insensitive, we have [X]P = [X]f.I UOR} Then by Theorem 7 in [CM2],

(X1H = [x)1F U{MR}, and the theorem follows. 0

Given a set of fd’s G, if R cover embeds G, an algorithm in [GY] can find an em-
bedded cover H of G in polynomial time. Therefore the total projection of any set of
attributes X C R;, R; € R, for ctm schemes with respect to fd’s plus the jd X} R can be
computed by our methods in §5.

8. Conclusions. We have shown that constant-time-maintainable database schemes
are bounded with respect to dependencies in the following cases: (1) only cover-embed-
ded functional dependencies appear as constraints; (2) only equality-generating depen-
dencies appear as constraints and the database scheme has a lossless join. Interest-
ingly, we showed that total projections can be computed via unions of projections of
simple chase join expressions. Therefore by previous results in [C], we can compute opti-
mally the total projections of the representative instances of constant-time-maintainable
database schemes. We also proved that by the same method we can compute X -total pro-
jections when a set of functional dependencies and the join dependency of the database
scheme are the constraints, for any X included in some relation in the database scheme.

Within the above context, our results show that fast constraint enforcement is strong-
er than efficient query processing in the sense that every constant-time-maintainable
scheme is bounded with respect to dependencies. Our results also showed that the class
of constant-time-maintainable schemes is highly desirable with respect to query process-
ing. Therefore the class of constant-time-maintainable database schemes is the largest
class of database schemes, which is highly desirable with respect to both constraint en-
forcement and query processing. Importantly, this class of schemes can be effectively
recognized by known methods [GW], [W], [WG]. The previously known largest class of
database schemes with these desirable properties is the class of independent database
schemes which is a proper subclass of constant-time-maintainable schemes.

The boundedness of constant-time-maintainable schemes was proven in the absence
of the essential uniqueness property [GY], [S2] of independent schemes. As a conse-
quence, the polynomial construction of the relational expressions that compute total pro-

42 HECTOR J. HERNANDEZ AND KE WANG

jections for independent schemes with only functional dependencies [AC1], [C], [1IK],
[S2], [S3] follows immediately from the uniqueness property and our construction.

Our work illustrates a more general technique to prove boundedness, and it provides
more insight into characterizing boundedness.

Appendix.

A. Proofs of claims in main lemma. In this section, we present the proofs of Claims
1,2, and 3 in Lemma 5. These proofs should be read in the context of that lemma, since
we are assuming all the assumptions, definitions, and notation introduced there. First,
we present a claim needed in Claims 1 and 3.

CLAIM 0. No variables are replaced by constants from z[V| when computing T' from
Ty.

Proof. Let t, be a tuple in Ty. Let Ay =< 2, W1 — By >,..., Ay =< 2, W, —
B, > be asequence that can strictly expand ¢; when computing 7" from Ty ; observe that
the fd’s are from F'+|R;. Since)y, ..., A, canstrictly expand ¢; andr; € CONS(R, F),
t1[Bi] is a variable (because z[B] is a constant) for 1 < < m.

We claim that for 1 < [< m,B; € R; — V. Assume otherwise. That is, assume
there is B, for some 1 < ¢ < m such that By € V. Let Y, = {B|t,[B] = z[B]}. Then
Y1 C V since z[R; — V] are all unique constants. Thus ¢,[Y;] = z[Y1] = u1[Y3]. Also,
notice that B, ¢ Y1, because t1[By] is a unique variable (and z[B,] is a constant). From
a property of the chase process and the fact that ¢; and 2z have common values exactly
on Yy, we have Y; — B, € F*|R;. Therefore one step of chasing T3 by applying the
fd-rule < ui,t1,Y7 — B, > to u; and t; will equate the variable ¢;[B,] to the constant
u1[By], which is a contradiction to the inductive hypothesis. Thus the claim B; € Ry —V
for 1 <1 < m holds, and therefore Claim 0 is proven. 0

CLAIM 1. T is the expansion of 1. That is, Ty is identical to Ty, up to the renaming of
variables.

Proof. Assume that T} is not the expansion of r;. Then there is a tuple ¢ € T} and a
tuple p € r, for some r; € r; and an fd Y; — B, € F|R; such that < p,Y; — B; > can
strictly expand ¢. Then ¢[B;] must be a variable; otherwise, ¢ and p violate Y; — B;, which
is a contradiction to r; € CONS(R, F). We claim that ¢ comes from a tuple in Ty, and
p is a tuple from r. First, notice that ¢ cannot be the tuple 2’ because 2’ is already the
expansion of z in r,. Then ¢ must come from a tuple in Ty (that is, ¢t € T). Therefore, p
cannot be z, because at this point we already expanded every tuple from T3 by z as much
as possible. Therefore our claim holds. Since we are expanding ¢ € T” by p from r, and
since by Claim 0 to obtain 7" from T3 we have just replaced some variables with unique
constants that do not appear in r, these changes certainly will not create the possibility
for new strict expansions by tuples from r. Therefore this is a contradiction. Thus Claim
1 holds. 0

CLAIM 2. u1[A;] and v1[A;] are both replaced by the constant z[A;), that is, the effect
of the first fd-rule has been enforced when computing T; from Ty .

Proof. It is not difficult to see that in the above computation of T3, u; [A;], and v;[A4]
are both equated to z[A,;] because expanding u; by < z, X; — A; > will set u;[4;] to
2[A;], and expanding v; by < 2z, X; — A; > will set v;[A;] to z[A;]. Therefore Claim 2
holds. 0

CLAIM 3. There are mappings 6, . . . ,0,,—1 such that forall 0 < j <m — 1,

1. 0; is a containment mapping from 7;(- - - (1o(Tg)) - - *) to Tj(- - - (5(T")) - - -);
2. 0, satisfies the condition that any variable § is mapped to either itself or to the unique
constant from z|Ry — V| that replaced § when we computed T,

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 43

where for 1 <1 < j, 7] =< 0;_1(w),0,—1(v1), X; — Ai >, and 1o and 7, are defined to be
such that 7o(Ty) = Ty and 74(T') = T".

Proof. The proof is by induction on j. a

Basis. j = 0. Let tq,to,...,tq be the tuples in Ty; for each t;,1 < I < g, let t; be the
tuple in T” that comes from ¢, that is, ¢; is ¢; with possibly some of its variables replaced
by the unique constants from z[R; — V] from Claim 0. Thus it should be clear that there
is a containment mapping 6, from T3 to T” given by 6o(t;) = t;for 1 < [< ¢; and
6o is such that any variable § is mapped to either itself or to the unique constant from
2[Ry — V] that replaced § when we computed 7”.

Induction. We now assume that our claimistrueforj =k —1,1 <k <m —1. We
prove it for j = k.

First we notice that the sequence 71, . . ., 7}, are fd-rules for T” from the inductive hy-
pothesis; and therefore 6,1 (uk) [X&) = Ok—1(vk) [Xk]. LetT¢_; = 7e—1(: - - (70(T¥F)) - - *)
andlet T} ; = 7 _;(--- (79(T"))---). We now derive a containment mapping 6, from
0x—1 and 7. Since uy[Ax] and v, [Ax] must be some distinct variables §; and 6 in T};_,
(because at the beginning of the proof of Lemma 5 we have assumed that all fd-rules ex-
cept 7, equate only variables), §;_; maps each of them to either itself or to the unique
constant from z[R; — V] that replaced it when we computed T”. There are two cases
to analyze depending on whether both 6, (6;) and)1 (62) are unique constants from
Z[Rl - V]

Case 1. 0x_1(61) and 6x_1(62) are both unique constants from z[R; — V]. Then
Ox—1(81) = 6_1(82), because we only introduced at most one unique constant on each
column in the construction of T7”. (Then 7y, is a trivial fd-rule for T} _; that makes no
change to T}, _,, i.e., T, = T_,.) Without loss of generality, we assume the application
of 7 to T}, replaces 6; with 8,. We define 6, to be 6;_, except that 6 does not need
to be defined for 6;.

Case 2. Either 0;_1(61) or 8x_1(62) (or both) are variables. Assume without loss of
generality that 6,_1(6,) is a variable and that we apply 73, to T}'_; by replacing §; with
82. Then we apply 74, to T}, _, by replacing 6j_1(61) with 6x_1(62) and define 6;, to be
0r—1 except that), does not need to be defined for 6;.

The mapping 6;, defined above satisfies the conditions required by our claim. This
completes the induction and our proof of Claim 3. 0

Acknowledgments. We are grateful to the anonymous referees for their constructive
comments and suggestions that made this paper more readable.

REFERENCES

[ABU] A. V. AHO, C. BEERI, AND J. D. ULLMAN, The theory of joins in relational databases, ACM Trans.
Database Systems, 4 (1979), pp. 297-314.

[AC1] P. ATzEN1 AND E. P. E CHaN, Efficient query answering in the representative instance approach, in
Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, 1985, pp. 181-188.

, Independent database schemes under functional and inclusion dependencies, in Proceedings
of the Thirteenth International Conference on Very Large Databases, Brighton, England,
1987, pp. 159-166.

[AC3] ———, Efficient optimization of simple chase join expressions, ACM Trans. Database Systems, 14
(1989), pp. 212-230.

[ASU] A. V. AHO, Y. SAGIV, AND J. D. ULLMAN, Equivalence of relational expressions, SIAM J. Comput.,
8 (1979), pp. 218-246.

[AC2]

44
[BH]
[BV]
[Brv]
€
[CM1]

[CM2]
[CGKV]

[CH1]

[CH2]

[CH3]
[CH4]
[F]

[GM]

[GMSV]

[GMV]

[GW]

[GY]
[H1]
[H2]

[HC]

(1

[IIK]
M]

[Ma]
[MMS]

[MRW]

HECTOR J. HERNANDEZ AND KE WANG

C. BEERI AND P. HONEYMAN, Preserving functional dependencies, SIAM J. Comput., 10 (1981),
pp. 647-656.

C. BEERIAND M. Y. VARDL, A4 proof procedure for data dependencies, J. Assoc. Comput. Mach., 31
(1984), pp. 718-741.

V. BROSDA AND G. VOSSEN, Update and retrieval in a relational database through a universal schema
interface, ACM Trans. Database Systems, 13 (1988), pp. 449-485.

E. P. F. CHAN, Optimal computation of total projections with unions of simple chase join expressions,
in Proceedings of ACM SIGMOD Annual Meeting, Boston, MA, June 1984, pp. 149-163.

E. P. F. CHAN AND A. O. MENDELZON, Answering queries on the embedded-complete database
schemes, J. Assoc. Comput. Mach., 34 (1987), pp. 349-375.

, Independent and separable database schemes, SIAM J. Comput., 16 (1987), pp. 841-851.

S. S. CosMADAKIS, H. GAIFMAN, P. C. KANELLAKIS, AND M. Y. VARDI, Decidable optimization
problems for database logic programs, in Proceedings of 20th ACM Symposium on Theory
of Computing, 1988, pp. 477-490. (It also appears as IBM Research Report RJ 6145 (60855),
Yorktown Heights, NY, March 22, 1988.)

E. P. E. CHAN AND H. J. HERNANDEZ, On the desirability of y-acyclic BCNF database schemes, The-
oret. Comput. Sci., 62 (1988), pp. 67-104.

, Independence-reducible database schemes, in Proceedings of the Seventh ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, Austin, TX, 1988, pp.

163-173.

, Testing unboundedness of database schemes and functional dependencies, Inform. Process.

Lett., 28 (1988), pp. 317-326.

, On generating database schemes bounded or constant-time-maintainable by extensibility,
Acta Inform., 25 (1988), pp. 475-496.

R. FAGIN, Horn clauses and database dependencies, J. Assoc. Comput. Mach., 29 (1982), pp. 952-
983.

M. H. GRAHAM AND A. O. MENDELZON, The power of canonical queries, unpublished manuscript,
1983.

H. GAIFMAN, H. MAIRSON, Y. SAGIV, AND M. Y. VARDI, Undecidable optimization problems for
database logic programs, in Proc. of 2nd IEEE Symposium on Logic in Computer Science,
Ithaca, NY, 1987, pp. 106-115. (It appears also as IBM Research Report RJ 5583 (56702),
Yorktown Heights, NY, April 3, 1987.)

M. H. GRAHAM, A. O. MENDELZON, AND M. Y. VARDI, Notions of dependency satisfaction, J. Assoc.
Comput. Mach., 33 (1986), pp. 105-129.

M. H. GRaAHAM AND K. WANG, Constant time maintenance or the triumph of the fd, in Proceed-
ings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
Cambridge, MA, 1986, pp. 202-216.

M. H. GRAHAM AND M. YANNAKAKIS, Independent database schemas, J. Comput. System Sci., 28
(1984), pp. 121-141.

P. HONEYMAN, Extension joins, in Proceedings of International Conference on Very Large
Databases, 1980, pp. 239-244.

, Testing satisfaction of functional dependencies, J. Assoc. Comput. Mach., 29 (1982), pp.
668-677.

H. J. HERNANDEZ AND E. P. FE. CHAN, A characterization of constant-time maintainability for BCNF
database schemes, in Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data, Chicago, IL, June 1988, pp. 209-217.

Y. E. IOANNIDIS, 4 time bound on the materialization of some recursively defined views, in Proceed-
ings of the Eleventh International Conference on Very Large Databases, Stockholm, Sweden,
1985, pp. 219-226.

M. Ito, M. IwasAkl, AND T. KAsAMI, Some results on the representative instance in relational
databases, SIAM J. Comput., 14 (1985), pp. 334-354.

A. O. MENDELZON, Database states and their tableaux, ACM Trans. Database Systems, 9 (1984),
Pp- 264-282.

D. MAIER, The Theory of Relational Databases, Computer Science Press, Rockville, MD, 1983.

D. MAIER, A. O. MENDELZON, AND Y. SAGLv, Testing implications of data dependencies, ACM
Trans. Database Systems, 4 (1979), pp. 455-469.

D. MAIER, D. ROZENSHTEIN, AND D. S. WARREN, Windows functions, in Advances in Computing
Research, JAI Press, Greenwich, CT, 1986, Vol. 3, pp. 213-246.

[MUV]
[NS]

[$1]
(s2]

[S3]
(S4]

[U]
[Var]
[Vas]

(W]

WG]
[Y]

[YP]

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 45

D. MAIER, J. D. ULLMAN, AND M. Y. VARDI, On the foundations of the universal relation model,
ACM Trans. Database Systems, 9 (1984), pp. 283-308.

J. FE. NAUGHTON AND Y. SAGIV, A4 decidable class of bounded recursions, in Proceedings of the
Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
San Diego, CA, 1987, pp. 227-236.

Y. SaG1v, Can we use the universal instance assumption without using nulls?, in Proceedings of the
1981 ACM SIGMOD International Conference on Management of Data, 1981, pp. 108-120.

,A characterization of globally consistent databases and their correct access paths, ACM Trans.

Database Systems, 8 (1983), pp. 266-286.

, Evaluation of queries in independent database schemes, J. Assoc. Comp. Mach., to appear.

, On bounded database schemes and bounded horn-clause programs, SIAM J. Comput., 17
(1988), pp. 1-22.

J. D. ULLMAN, Principles of Database Systems, Computer Science Press, Rockville, MD, 1982.

M. Y. VARDI, Decidability and undecidability results for boundedness of linear recursive queries, in
Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Austin, TX, 1988, pp. 341-351.

Y. VASSILIOU, A formal treatment of imperfect information in data management, CSRG TR-123,
University of Toronto, Toronto, Canada, 1980.

K. WANG, Can constant-time-maintainability be more practical? in Proceedings of the Ninth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1989, pp. 120—
127.

K. WANG AND M. GRAHAM, Constant-time maintainability: A generalization of independence, sub-
mitted for publication, 1988.

M. YANNAKAKIS, Algorithms for acyclic database schemes, in Proceedings of the International Con-
ference on Very Large Databases, 1981, pp. 82-94.

M. YANNAKAKIS AND C. H. PAPADIMITRIOU, Algebraic dependencies, J. Comput. Systems Sci., 25
(1982), pp. 2-41.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 46-56, February 1993 004

TIGHT WORST-CASE PERFORMANCE BOUNDS
FOR NEXT-k-FIT BIN PACKING*

WEIZHEN MAO?

Abstract. The bin packing problem is to pack a list of reals in (0, 1] into unit-capacity bins using the
minimum number of bins. Let R[A] be the limiting worst value for the ratio A(L)/L* as L* goes to oo,
where A(L) denotes the number of bins used in the approximation algorithm A, and L* denotes the minimum
number of bins needed to pack L. Obviously, R[A] reflects the worst-case behavior of A. For Next-k-Fit(NkF
for short, k > 2), which is a linear time approximation algorithm for bin packing, it was known that 1.7 +
WI?TI) < R[NKF] < 2. In this paper, a tight bound R[NkF] = 1.7 + q500—y is proved.

Key words. bin packing, approximation algorithm, worst-case performance

AMS(MOS) subject classifications. 68Q25, 68R05

1. Introduction. Given a finite list L = (a1, as,. .., a,) of reals in (0, 1], and a se-
quence of unit-capacity bins, By, Bs, . . ., the bin packing problem is to pack the numbers
in the list into the bins such that no bin contains a total exceeding 1 and that the number
of bins used is minimized.

Since the bin packing is NP-complete [9], no polynomial-time algorithm has ever
been developed. A lot of effort has been made to find good approximation algorithms
for the problem.

In order to evaluate and compare the quality of different approximation algorithms,
we need to have a rigorous mathematical analysis of the worst-case behavior of these
algorithms. Given an approximation algorithm A, and for any list L, let A(L) be the
number of bins used in the packing resulting when A is applied to L, and L* be the
minimum number of bins needed to pack L. The worst-case performance bound of the
approximation algorithm A is defined to be R[A] = lim sup max{A(L)/L*} as L* — oc.

Besides those well-studied approximation algorithms such as First-Fit (F'F'), Best-
Fit (BF), First-Fit-Decreasing (F F D), Best-Fit-Decreasing (BF D), and Next-Fit (N F')
[1], [5), [6], [7], [8], there is another important algorithm called Next-k-Fit (NkF'), where
k is an integer greater than 1. In NkF', we process the numbers in L in turn, starting from
a1, which is placed at the bottom of the first bin B;. Suppose that a; is now to be packed.
We look at the last £ nonempty bins. If a; does not fit into any of them, a new bin is
created; otherwise, a; will go to the lowest indexed one of these k£ nonempty bins into
which it fits. Earlier, Johnson [7] proved that 1.7 + ;3 < R[NkF] < 2. In the recent
paper written by Csirik and Imreh [2], a new lower bound of R[NkF| was given. They
showed that R[N2F] = 2 and 1.7 + Wg—_l) < R[NkF] < 2for k > 3. In this paper, we
study the tight worst-case performance bound for the Next-k-Fit algorithm. Our result
is the following theorem.

MAIN THEOREM.

R[NkF] =17+ k> 2.

3
10(k — 1)’

In §2, we study the upper bound proving technique for NkF bin packing. In §3, we
prove an important lemma. In §4, we show the proof of the main theorem.

*Received by the editors May 6, 1989; accepted for publication (in revised form) October 1, 1991. This
research was supported by National Science Foundation grant CCR-88-13283, and was partially done at Prince-
ton University.

tDepartment of Computer Science, The College of William and Mary, Williamsburg, Virginia 23187-8795.

46

NEXT-k-FIT BIN PACKING 47

2. The upper bound of R[NkF). It is known that R[N2F] = 2, and R[NkF] >
1.7+ W%—T) for k > 3 [2]. To prove the main theorem, all we need to do is prove the
upper bound result, i.e., RINkF] < 1.7 + W%T for £ > 3. We need some careful
analyses and preliminary results.

In the NkF packing of any list L, there are NkF (L) nonempty bins, By, B,. ..,
Bynkr(r)- For each bin B;, its content can be divided into k areas, A4;1, Aiz2,..., Aik,
where A; ; contains all the numbers coming to B; when B; is the rightmost, or, in other
words, the most recently created nonempty bin in the current packing, and A; , contains
all the numbers coming to B; when B; becomes the second rightmost nonempty bin, etc.
Finally, A; j contains all the numbers coming to B; when B; becomes the oldest among
the k active bins and is about to be thrown away. Figure 1 shows the division for N3F.

To prove the upper bound, we wish to show that NkF (L) < (1.7 + Wﬁ)l‘* +c
for all L, where c is a constant. With the help of the following weighting function W :
(0, 1] — R, also shown in Fig. 2, we will find the relation between NkF(L) and L*.

Sa ifa€ (0, 3;
9 1 s 1 1
Fa— <5 itae(z, 30
5 10 62 31
W(a) = 6 1 : 11
50+ 15 1fa€(§, 305
6 2 3 . 1
50+ 5+ Top-1) ifa € (3, 1].

For any number a; in L, W (a;) is called the weight of a;. W (B;), the weight of
the bin B;, is defined to be the sum of the weight of all numbers in B;, i.e., W(B;) =
> vayem, W(a;). And W(L), the weight of the list L, is defined to be the sum of the
welght of all numbers in L, i.e., W(L) = Z‘v’a ez W(a;). When there is no possibility of
confusion, we also use B; to denote the sum of the numbers in bin B;, A; » the sum of
the numbers in area A, j, and b; the bottommost item in bin B;.

3. A lemma.

LEMMA. In the NkF packing of L, for j < NkF(L), if B; < 2, then there i is >0
such that either (1) j+1 < NkF(L), and $B; +W(1) o +W(B) > l+ Bji1,
or(2)j+1= NkF(L),and ¢B; + W(j+1) +- +W(BNkF(L)) +2 > 1+8 BNkF(L)

Proof. For notational s1mp11c1ty, we assume j = 1. Because B, < , items in A q
and Az ; must be greater than §. Consider the following cases.

Case 1. If Bl < , then B; must be followed by k bins with their bottommost items
greater than 1 5, 1€, b2, b1 > 3 (Flg 3).

gB1 +W(Bz)+~"+W(Bk)+W(Bk+1)

> 8 A1+ ($b2 + 2+ opimgy) + o + B0k + 2+ qopi—ny) + §Brr1 + 5 + iy
> g(Al,l+b2)+g(b3+“'+bk)+(§+m(%1_))k+gBkH
>§><1+§x%x(k—2)+(%+iﬁ)k+g—3k+l
>k

Case 1L If < B; < %, then we consider the cases in Fig. 4.

48 WEIZHEN MAO

B, is created.

Ai.l is formed.

Ai,z is formed.

B, is thrown away.

i+3

F1G. 1. How the three areas of B; in N3F packing are formed.

Case 1. Bs has one item greater than 1. We have

$B1 + W(B,)
6 6 2 3
2 §B1+5B2+ § + 5o
6,126
>2eXgti+iBe
>14+ ng.
Starting from now, we assume that all the items in B; are no greater than %
Case2. Ay, > 3. Since A ; has at least two items, we assume at least one of its two
bottommost items is in (§, 3]. It is clear that B is greater than 2.

NEXT-k-FIT BIN PACKING

WA
1.6+3/(10(k-1))

I

1+3/(10(k-1))

02—

0 ve 13 12 23 56 1

F1G. 2. The weighting function W ().

By Byt
FIG. 3. The possible packing when By < 1.

If the other item in Ay ; is also in (3, 3], then

SB1 +W(Bs)
>8B1+ 8B+ 3(1-B1)~ 35 +§(1-B1) — 55
>1+ ng.

If the other item is in (1, 1], then

$B1 + W (By)

8B+ 8B +31-B) -5+
B +3+ 8B,

3x2+3+8B,

vV IV IV IV

50 WEIZHEN MAO

Case 1: B, has one item >1/2

Case 2: A2,1>1/2, with at least

one of two bottommost
items in (1/6, 1/3]

Case 3: A2,1>1/2, with its two

bottommost items in
(1/3,1/2] and A3,1>1/2

Case 4: A, 1>1/2, with its two

bottommost items in
(1/3,1/2]and A3,1<=1/2

Case 5: A2,1 <=1/2

B,

FIG. 4. The possible packings when % < B; < %.

Case 3. Ay1 > 1, with its two bottommost items in (3, 3, and A3 ; > 3. Itis clear
2
that B, > -
If A3 ; has one item greater than -;—, then

B, + W(Bz) + W(Bs)

>8Bi+ B+ 5+ +eBs+ i+ oo
6,1 ,6.,2 3,6
2gXgstyxgt+st+isBs

>2+8Bs.

NEXT-k-FIT BIN PACKING 51

If the two bottommost items of A3 ; are in (%, 3], then

gBl+W(Bz)+W(B3)

Bi+iB+ 5+ 15+ 5B+ 3(1-B) -5 +3(1-By) - 5
iBi1+2B+ 8+ ¢Bs

$Bi+3(1-Bi+3)+5+8B;

2+§-B3.

IV IV IV IV

If one of the two bottommost items is in (3, 3], and the other is in (}, 1], then

$B1 + W(B2) + W(Bs)

B+ $Ba b s+ 4§85+ 10~ B~ +
§B1+3B2+ %+ ¢Bs
§Bi+3(1-B1+1-B1)+5+¢Bs

2+ 8Bs.

IV IV IV IV

If the two bottommost items are in (3, 3], then

$By + W(B,) + W(Bs)

>8Bi+ 8B+ +5+iBi+ 5+ 5
>8B1+81-Bi+3)+%+8Bs
>2+ ¢Bs.

Case 4. Az, > 1, with its two bottommost items in (3, 1], and As; < 1. In this
case, we need to consider several possibilities according to the area distribution of Bs.
In Fig. 5, on the right side of the vertical line are the three such possible packings that
may follow the bins B; and Bs.

IfA3,1 +---+A3,h < %,butA3,1 +--+ A3 pt1 > -;-,fOI‘]. < h<k-2,then

gBl +W(Bz)++W(Bh+3)

> §B1+§Bz+'1%+%+gB3+g(b4+“'+bh+2)+(%+m)h+gBh+3
>8B1+ 8By + 1+ 8(As1+ Azp) + Ex E x (R=1)+ 2h + &Byys

>8B + 8B+ 81 -Bi+1-B)+h— 2%+ 8Bpys

2h+2+§Bh+3-

\%

If A3,1 + -+ A3,k-1 < %, but A3,1 +---+ Ag,k > %, then

SB1 + W(Bz) + -+ + W(Bg+2)

> 2By + By + 5 + §B3 + §(ba + -+ + berr) + (2 + ompy)(k — 1) + £ Bryo
>8R+ 81 -Bi+)+t +Exi+Exix (k-2 + 2k -1+ 5+ Bess
>k+1+ $Biys.

52 WEIZHEN MAO

By

By By

By

FI1G. 5. The possible packings when A1 > %, with its two bottommost items in (%, %], and A3 < %

If A3 + -+ + As < 3, then

gBl+W(Bz)+"‘+W(Bk+3)
§B1+ng+Tl(—)~+%+ng+g(b4+'--+bk+2)+(%+ﬁ)k+gBk+3
$5Bi+81-Bi+)+ 1 +8A51+8ba+Exix(k—2)+2k+ 5+ ¢Brys
§(As1 +ba) +k+ 5+ EBrys

§x1+k+%+gBk+3

k+2+ &Byys.

IV IV IV IV IV

Case 5. Ay < % Let us consider the subcases in Fig. 6.

IfAg 1+ -+ Aon < 4,but Ay g+ + Az p1 > 3, where 1 < h < k—2, thenitis
easy to prove that W (Bz) > $a+ 2, where a is the smallest item among Az 1, . . . , A h41.
Because we know that A; ; and A; p; are both nonzero, so there are at least two items
in these areas. Since Ap 1 ++ -+ A py1 > 3, then (Az1+- -+ Az py1)—a > 5. Ifthereis
oneitemin Ay 1,..., Az pt1in (%, %], then W(Bz) > ga+ g((Azyl +.- -+ A2 pt1)—a)+
L > Sq + 2. Otherwise, all numbers in Az 1, ..., Az p41 are in (3, 3], and there are at
least two of them. If there are only two numbers in (3,], then W(Bz) > Sa+ (421 +
ot Agpy1)—a)+E(Ao+ Aop) -S> Sa+ Exi+Eixi -2 =8+ 2. If
A1, ..., Az st have at least three items in (3, 3], then W(B;) > Sa+ E x (5 +§) =
Sa+ 2. Therefore,

NEXT-k-FIT BIN PACKING 53

Bpi1 Byio

Bk+l

By By

1

FIG. 6. The possible packings when Az2,1 < 5.

eB1 +W(Bz) + - + W(Bhya2)

>8Bi+%a+ 2+ &(bs+- - +bnr1) + (2 + mpmpy)h + EBrae
>8Bi+a)+2+ x5 x(h—1)+2h+ $Buys
>8x1+2+2(h-1)+2h+ $Bhi2

>h+1+ 8Bpo.

Y

If A, 1 +- 4 A2 k-1 < ,but Aoy 4+ Ao > 5 1 then it is easy to prove that

W(Bz) > A2 1+ 55 10 Because 1f Az has at least one 1tem in (3, 3], then the 1nequahty

is obvious. If all the items m Az arein (3, 3] then there are at most two such items in

Az smce Ay is less than 1 So W(BQ) > 8451 — 5 x 2+ 8(Agp + -+ Agp) >
6A21 -1+ 3B2 >841-t+3xi= 6A21 + 5. Therefore,

SB1+W(B2) + -+ W(Biy1)
> 8B + A21+10+ S(bg+---+br)+ (2 +m§:—17)(k_1)+g3k+1

ng ‘g'(A2,1+b3)+E+gng(k—3)+%(k—1)+%+gBk+l
>8+8x1+L+3(k-3)+2(k—1)+ 3 + EBrps
>k + $ By

54 WEIZHEN MAO

If Ay1 + -+ + Az < 1, then it is easy to prove that W(Bg) > 6B2 + 3451 - %
Because if A, ; has at least one item in (3, 3], then W(Bz) > By + 55 = 6B2 + 38 x
1-1>8B,+24;, — L. If all the numbers in Az are in (3, 3] then W(Bz) >

%Az,l — ILO X 2+ g(A2,2 + -+ A2,k) = 6.32 + 3A2,1 - — . Therefore,

SB1+W(B2) + -+ W(Bgy2)

>8B + 8B+ 34, -1 + g(b3 + oo+ brya) + (2 + op=py)k + § B2
>8B1+3(Bi+A21) -+ 8Ba+bs) + Ex E x (k—2)+ 2k + 3 + Bt
2ixg+ixi-g+Ex1+{k- 2)+§k+10+5Bk+2
2k+l+gBk+2.

This ends the case analysis. If beginning with B; (B in the case analysis) there is
a portion of the NkF packmg which matches one of the above cases, and if we let [be
the index of the last bin in that portlon minus j, then j + 1 < NkF(L), and ¢B; +
W(Bjt1) + - -+ + W(Bjt1) > L + $Bjy, which satisfies (1) in the Lemma. However if
the NkF packlng of the list L ends without completely matching any of the above cases,
ie., Bj,..., BNnrr(r) only matches the first part of one of the cases, then we can see that
no matter Where the packing ends B; is followed by k(> 0) bins with ¢ B; + W(Bj4+1)+
-+ W(Bj+nr) = h, then followed by g(> 0) bins with items greater than , hence each
hav1ng weight greater than 1. If we let [be the index of the last bin in the packmg minus
j,i.e., NkF(L)—j,then j+! = NkF(L),and gBj +W(Bj+1)+' . '+W(BNkF(L))+2 >
(NkF(L) — j) 4+ 2 > I + $ Bnyr(r), Which satisfies (2) in the Lemma.

4. Proof of the main theorem.
CLAIM 1. For any bin B; of items of total size 1 or less,

3
;) < 1. —_—
W(B) < LT+ o

Proof. See the proof of Lemma 1 in the work of Garey, Graham, Johnson, and Yao
[4]. We note that our weighting function differs from that in the reference only by the
addition of ﬁ—T) for the items of size exceeding 1, and there can be only one such item
in B;. So the bound in the claim exceeds the bound 1.7 in the reference by precisely this
amount. g

CLAIM 2. For any list L,

W(L) < (1.7+ 10(k3))L*.

Proof. Apply the optimal algorithm to L. We get L* nonempty bins.

W) = T W(B)
L .
2 (L7 + ﬁ) (by Claim 1)

(1.7 + oy) L™ O

IAN I

CLAIM 3. For any list L, there exists a constant c such that

W(L) + ¢ > NkF(L).

NEXT-k-FIT BIN PACKING 55

Proof. Let j be the largest index of the bins in the Nk F' packing such that Zf.;l W(B;)
> j — 1+ £B;. Such j always exists.

Ifj= NIcF(L) then W(L) = W(B;) > j— 1+ &B; > NkF(L) — 1. So
W(L)+1> N kF(L). Now assume j < N kF(L). Letus con51der B;.
If B; > 2, then 0_, W(B;) + W(Bjy1) > j -1+ 8B;+ f‘B,Jrl >j+¢Bj.

There exists J + 1, such that 77, I W(B) > i+ $Bj+1. ThlS isa contradlctlon to the
assumption that j is the largest 1ndex having the property So the case of B; > 2
never happen. ‘
If B; < 2, and (1) in Lemma happens, then >>7_, W(B;) + W(Bjy1) + -+ +
w(JH) > j—148B;+1+ ¢B;,1— §B;. Therefore, Z”H W(B;) > j+1-1+8Bjy
This is again a COIltI'adlCtIOIl to the assumptlon that j is the largest index. So (1) in
Lemma can never happen.
If B; < 3, and (2) in Lemma happens, then we have > (Bi) + W(Bj+1) +
+W(BNkF(L))+2>]—1+GB +NEF(L)—j+ BNk:F(L) —Bj.SO W(L)+3
2 NEF(L). 0
Now we are prepared to prove Main Theorem.
Proof of Main Theorem.

RINKkF]

lim sup max{NkF(L)/L*}

limp» 00 (W(L) +¢)/L* (by Claim 3)
limpe oo (1.7 + mope=gy) L* +¢)/L* (by Claim 2)
1.7+ —10(,?_1).

IAIA

Combining with the previous results R[N2F] = 2 and RINkF] > 1.7 + 52—y, We
have RINkF] = 1.7 + 52— for k > 2.

Acknowledgment. The author wishes to thank Professor Andrew C. Yao, without
whose valuable advice, constructive comments, and enthusiastic encouragement the
work of this paper could never have been accomplished. And also, many thanks go to
Dr. David S. Johnson, who read the first version of the paper carefully, pointed out
one mistake in the proof of the lemma, and suggested the current proving style, which
significantly simplifies the entire proof.

REFERENCES

[1] E. G. COFFMAN, JR., M. R. GAREY, AND D. S. JOHNSON, Approximation algorithms for bin packing—an
updated survey, in Algorithm Design for Computer System Design, G. Ausiello, M. Lucertini, and
P. Serafini, eds., Springer-Verlag, Berlin, New York, 1984, pp. 49-106.

[2] J. Csirik AND B. IMREH, On the worst-case performance of the NkF bin-packing heuristic, Acta Cybernet.,
9 (1989), pp. 89-105.

[3] J. CSIRIK AND D. S. JOHNSON, Bounded space on-line bin packing: Best is better than first, Proc. 2nd Ann.
ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 309-319.

[4] M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON, AND A. C. YAO, Resource constrained scheduling as gener-
alized bin packing, J. Combin. Theory, 21 (1976), pp. 257-298.

[5] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[6] D. S. JOHNSON, Near-optimal bin packing algorithms, Ph.D. thesis, Tech. Report Mac TR-109, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1973.

7 , Fast algorithms for bin packing, J. Comput. System Sci., 8 (1974), pp. 274-314.

[8] D.S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY, AND R. L. GRAHAM, Worst-case performance
bounds for simple one-dimensional packing algorithms, SIAM J. Comput., 3 (1974), pp. 229-325.

56 WEIZHEN MAO

[9] R. M. KARrP, Reducibility among combinatorial problems, in Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.
[10] W. MAo, Scheduling and Bin Packing: A Study of the Worst-Case Performance Bounds, Ph.D. thesis, De-
partment of Computer Science, Princeton University, Princeton, NJ, 1990.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 57-61, February 1993 005

A NOTE ON THE COMPLEXITY OF A SIMPLE TRANSPORTATION PROBLEM*
GREG N. FREDERICKSON'

Abstract. Consider the problem of using a vehicle to transport & objects one at a time between s stations on
acircular track. Let the cost of the transportation be the total distance traveled by the vehicle on the track. An
O(k+ M (s, q)) time algorithm is presented to find a minimum cost transportation, where M (m, n) is the time
to solve a minimum spanning tree problem on a graph with m edges and n vertices, and ¢ < min{k, s} is the
number of strongly connected components in an associated balanced problem. Also, the minimum spanning
tree problem on a graph with m edges and n vertices is reduced to a transportation problem on a linear track
with O(m) stations, O(m) objects, and O(n) strongly connected components in O(m) time.

Key words. transportation problems, robot arm motion, circular track, graph augmentation

AMS(MOS) subject classification. 68Q25

1. Introduction. Consider an undirected weighted graph with objects located at var-
ious vertices. Associated with each object is a destination vertex, to which that object is
to be moved by a vehicle that traverses the edges of the graph. A fundamental problem
in motion planning is to determine a minimum cost tour of the vehicle that transports all
objects from their initial positions to their destinations. In the case of general graphs, the
problem is NP-hard, even if the vehicle can transport only one object at a time [FHK].
Recently, attention has focused on solving this motion planning problem on very simple
classes of graphs with unit capacity vehicles. Such examples have potential applications
in robotics. Atallah and Kosaraju consider graphs that are simple paths and simple cy-
cles [AK]. Frederickson and Guan consider graphs that are trees [FG1], [FG2], [FG3].
These papers distinguish between two cases, based on whether or not drops are allowed
in the transportation. A drop is an unloading of an object at a vertex that is not its des-
tination. If an object is dropped, its move is not immediately completed, and the object
must be picked up and transported farther at some later time in the transportation.

In this note we tighten the bound of [AK] for the case of simple cycles with no drops.
Whereas all possible solutions are considered in a divide-and-conquer search that is used
in [AK], we quickly prune away all but a constant number of possible solutions. We also
show that the asymptotic complexity of the transportation problem with no drops for
either a simple path or a simple cycle is essentially the same as that of the minimum
spanning tree problem (on a general graph).

For simplicity, we shall use much of the notation in [AK]. In paiticular, we shall
refer to the underlying graph as a track, and the vertices in the graph as stations. Let
k be the number of objects; s, the number of stations; and ¢, the number of strongly
connected components once additional moves are added to yield a certain “balanced”
problem. Let M(m,n) be the time to solve the minimum spanning tree problem on a
graph with n vertices and m edges. (Currently, the fastest known algorithm in a standard
comparison-based model for finding the minimum spanning tree problem is given in
[GGST], providing an upper bound on M (m,n) of O(mlog 3(m,n)), where §(-,) is a
slowly growing function similar to the log*(-) function. In the trans-dichotomous model
of Fredman and Willard, an upper bound of O(m) is achieved for M (m, n) in [FW].) For
the case in which drops are allowed, an O(k + s) time algorithm is given in [AK] for the

*Received by the editors September 30, 1988; accepted for publication (in revised form) December 2,
1991. This research was supported in part by the National Science Foundation under grant CCR-8620271 and

by the Office of Naval Research under contract N00014-86-K-0689.
tDepartment of Computer Sciences, Purdue University, West Lafayette, Indiana 47907.

57

58 GREG N. FREDERICKSON

circular track and hence the linear track. For the case in which no drops are allowed, an
O(k + slog s) time algorithm is given in [AK] for a circular track and an O(k + M (s, q))
time algorithm for a linear track (where the time is as indicated in the note added in
proof in [AK]).

We make several observations about the structure of the transportation problem
on a circular track with no drops that allows us to generate an O(k + M(s,q)) time
algorithm. We also provide a simple argument that solving a transportation problem
on a linear track where k = s is in general no easier than solving a minimum spanning
tree problem on g vertices and s edges. Thus in the sense of asymptotic complexity, the
circular track problem with no drops is no harder than the linear track problem with no
drops. Thus for both the case of drops and the case of no drops, restricting the graph
from a circular track to a linear track will make the problem no easier.

2. A faster algorithm. In this section we derive several observations that lead to a
faster algorithm. We first recall some definitions from [AK]. Let the stations be indexed
from 1 to s, and the edge between stations ¢ and ¢ + 1 be denoted as interval (i,¢ +
1). Assume that each object moves in the shorter of the two directions for it, either
clockwise or counterclockwise around the cycle. Let ¢(4) be the input flux across interval
(4,7 + 1), defined as the number of clockwise moves in the input minus the number of
counterclockwise moves in the input across interval (¢, + 1).

Recall from [AK] that in any transportation, the number of clockwise moves across
an interval minus the number of counterclockwise moves across an interval will be the
same for all intervals. More generally, for any set of moves in which the difference across
every interval is the same, this common difference is called the flux. By adding moves in
which the vehicle carries no object, any particular value of flux can be achieved. Let v
be the value of the flux for some set of moves. Let I; be the length of interval (4,¢ + 1).
Let db(%)) be the cost of a minimum cost set of augmenting moves that yield a flux of .
The function db(-) represents the cost to achieve degree balance between incoming and
outgoing moves at each station. Then db(y) = > | |(¥ — ¢(3))| ;. Note that adding
moves with the “empty object” to achieve degree balance may result in more than one
strongly connected component, where each component is Eulerian, and each is isolated
from the others. Among all minimum-cost sets of augmenting moves that yield a flux of
1, let gy, be the minimum number of strongly connected components that result from any
of these augmentations. There is a minimum-cost set of augmenting moves that achicves
flux ¢, creates gy, strongly connected components, and is of cardinality O(k + s), and
such a set can be found in O(k + s) time. Besides the augmenting moves that achieve
a particular flux, additional moves with no object are in general necessary to achieve
connectivity among the components. With these additional moves a transportation can
then be constructed.

We introduce some additional notation. Let c,, be the total length of intervals with
#(i) = . Then cy = 3, ;)_y li- Note that ¢y, > 0 for all 4. Let tc(y) be the cost of
a minimum cost set of augmenting moves that yield a transportation with flux . The
function tc(-) represents the fotal cost to achieve both degree balance and connectivity.
Let v be the largest value of flux for which a set of augmenting moves of overall minimum
cost achieves degree balance. We note some simple relationships among these quantities
in the following lemmas.

LEMMA 1. For all values v of flux, tc(y) < db(y) + 2cy, which holds with strict
inequality if db(v) < te(y).

Proof. The addition of the augmenting moves that achieve degree balance will leave
one or more strongly connected components. If there is more than one such compo-

A SIMPLE TRANSPORTATION PROBLEM 59

nent, then the components are separated by intervals (4,4 + 1) with ¢(¢) = 1. Adding a
move in each direction across all but one such interval will yield one strongly connected
component. a

LEMMA 2. For all values < of flux,db(s) = db(p — 1) = 3.5 16 + 2 i<yp1C5-

Proof. Given a set of moves that achieve degree balance for flux) — 1, one can gen-
erate a set of moves that achieve degree balance for flux 1) by removing an augmenting
move from each interval ¢ for which ¢(¢) > ¢ — 1 and by adding an augmenting move
for each interval ¢ for which ¢(¢) < ¢ — 1. |

LEMMA 3. The value ~ satisfies the following:

(1) 2o jon—16 = 2 j<y—1635

(ii) stﬂycj >3 isnCi-

Proof. Part (i) follows directly from Lemma 2 and the definition of +y. Part (ii) follows
by combining the definition of y with

db(y + 1) =db(y) — ch + ch,

Ji>v i<y

which is obtained from Lemma 2. O

Next we note that db(v)) is a concave (upwards) function of .

LEMMA 4. The function db(-) is concave.

Proof. A simple proof by induction on n establishes that functions of the form
> 1laiz — b;| are concave. Note that db(-) is of this form. 0

Let 6 be the largest value of flux for which a minimum cost transportation is achieved.
Then tc(6) = miny{tc(¢))}. We next show that at most three values of ¢ need to be
considered.

LEMMA 5. A value of v in the range v — 1 < 1 < 7 + 1 achieves the minimum value
of te(+).

Proof. Suppose § > v + 2. Then

db(8) < te(6 — 1),

< db(6—1)+ 2cs—1 (by Lemma 1)

db(8)+ D> cj— Y cj+2c51

i>6—1 j<6—1

I

6—-2
db(6)+ (ZC]‘ _ch) -2 Z Cj-

J>y i<y j=7+1

By the nonnegativity of ¢y, ¢; > 0fory+1 < j < 6§—2. Butthen} ;. c;—3>°
which contradicts Lemma 3(ii). Thus § < v + 2. -
Suppose § < v — 2 and db(6 + 1) = tc(6 + 1). Then by Lemma 4

>4 <0,
db(8) > db(6 + 1) = tc(6 + 1).

Thus the cost of a solution with flux 6 + 1 is always at least as good as a solution with flux
6, a contradiction to the choice of 6.

60 GREG N. FREDERICKSON

Suppose § <y — 2 and db(6 + 1) < te(6 + 1). Then
db(8) < te(6 + 1),

< db(6+ 1)+ 2¢s41 (by Lemma 1)

= db(6)— > ¢j+ > ¢j+2e41

Jj>é J<6

= db(5)+ ZC]’— ZC]' —-2%6‘1.

j<v-1 j>v-1 j=6+2

By the nonnegativity of ¢y, ¢; > 0for§ +2 < j < v — 1. Butthen } ., _,c; —
> j>y—1€¢j > 0, which contradicts Lemma 3(i). From this and the preceding case, we
may conclude that § > v — 2.

Thus the above cases rule out all values 1 of flux except those in the range v — 1 <
p<y+1 u]

The algorithm to solve the transportation problem is the following. First, compute
the values of db(v) for values of ¢y from —k to k, as discussed in [AK]. Next perform a
scan of the values db(v)) to identify v. Then for each of the values v — 1, v, v + 1 of flux,
solve the associated minimum spanning tree problem, using the fastest currently known
algorithm. Choose from among the three transportations the solution that is of smallest
total cost. Let ¢ be max{qy—1, ¢y, ¢y+1}-

THEOREM 1. The time to solve a transportation problem with no drops on a graph that
is a simple cycle is O(k + M(s, q)), where k is the number of objects, s is the number of
stations, q is the maximum of number of strongly connected components in three related
balanced problems, and M (m,n) is the time to solve the minimum spanning tree problem
on a graph with n vertices and m edges.

Proof. By the discussion in [AK], the time to find y is O(k). The three minimum
spanning tree problems can each be set up in O(s) time. Since M (s, -) is Q(s), the result
follows. g

3. Areduction from the minimum spanning tree problem. We show how to reduce
the minimum spanning tree problem to a transportation problem with no drops on a
linear track. Recall from [AK] that the degree balanced version of the problem is one
in which a minimum cost set of balancing moves has been added so that for any interval
(,7+ 1) on the track, the number of moves across the interval in the clockwise direction
equals the number of moves across the interval in the counterclockwise direction. Let k&
be the number of moves and s the number of stations. Among all such minimum-cost sets
of augmenting moves, let g be the minimum number of strongly connected components
that result from any of these augmentations. There is a minimum-cost set of augmenting
moves that creates g strongly connected components and is of cardinality O(k + s), and
such a set can be found in O(k + s) time.

THEOREM 2. Let R(k, s, q) be the time to solve a transportation problem with no drops
on a linear track of s stations, with k moves and q components in the balanced problem. The
time to find a minimum spanning tree in a graph of m edges and n vertices is O(R(m, m, n)).

Proof. Let G = (V, E) be a connected weighted undirected graph with m edges and
n > 3 vertices. Without loss of generality, assume all edge weights are positive. Let W

A SIMPLE TRANSPORTATION PROBLEM 61

be the largest of the edge weights. Compute the degree of every vertex. For any vertex of
degree less than 3, add edges of cost W +1 to G to make every vertex be of degree at least
3. Once these edges have been added, if not all vertices are of even degree, introduce a
new vertex with edges of cost W + 1 to each vertex of odd degree. The resulting graph
G’ will have n' vertices, n < n’ < n + 1, and m’ edges, m < m’ < m + 3n, and the
degree of each vertex will be even and at least 4. By the choice of the cost of new edges,
a minimum spanning tree of G’ will be a minimum spanning tree of G, plus some edge
to the new vertex if a new vertex was introduced. Given graph G, find an Euler tour of
G’, starting at any vertex. We denote the tour by the sequence of vertices and edges v,
€1, V1, €2, V2, . 'Um,em,’l)()

Given the Euler tour, we generate an instance P of a transportation problem ona
linear track as follows. There will be m' + 1 stations, one for each visit of a vertex in the
Euler tour. The edge from the jth to the (5 + 1)st station will correspond to the (5 + 1)st
edge in the Euler tour and thus be of cost c¢(e;+1). There will be one object originating
at each station. The destinations of the objects are determined as follows. Consider the
rth station, and suppose it corresponds to a visit to vertex v in the Euler tour. Let the
r'th station correspond to the next visit to vertex v in the Euler tour. (If there is no next
visit to v, let the r'th station correspond to the first visit to v.) Then the destination of
the object at station r is station r’. Since the degree of each vertex in G’ is at least 4,
every object will have a destination different from its originating station.

It is clear from the construction that for any vertex in G’ the set of arcs in P form a
cycle. It follows that there are n’ strongly connected components in P. For each edge
(v, w) in G’ there is an edge of the same cost in the track from a station in the cycle of
stations corresponding to v to a station in the cycle of stations corresponding to w.

Consider an optimal transportation) for P. Consider the set of edges traversed by
Q when no object is being carried. Any edge traversed in one direction is traversed in
the other direction. The number of such edges is »’ — 1, and these edges correspond to a
minimum spanning tree of G’. Thus we can solve a minimum spanning tree problem by
generating an instance P, finding an optimal transportation @ for P, and extracting the
edges of the minimum spanning tree from Q). Clearly, all steps other than that of finding
the transportation will take O(m’) time. Thus the minimum spanning tree problem in
G’ can be solved in time O(m’ + R(m’ + 1,m’ + 1,n’)). Assuming the monotonicity of
R(-,-,-), and noting that R(m, -, -) is Q(m), this is O(R(m, m, n)). O

Acknowledgment. I would like to thank Mike Atallah for some helpful comments.

REFERENCES

[AK] M. J. ATALLAH AND S. R. K0OSARAJU, Efficient solutions to some transportation problems with appli-
cation to minimizing robot arm travel, SIAM J. Comput., 17 (1988), pp. 849-869.

[FG1] G. N. FREDERICKSON AND D.-J. GUAN, Ensemble motion planning in trees, in Proc. 30th IEEE Symp.
on Foundations of Computer Science, Research Triangle Park, NC, October 1989, pp. 66-71.

[FG2] , Preemptive ensemble motion planning on a tree, SIAM J. Comput., 21 (1992), pp. 1130-1152.

[FG3] , Nonpreemptive ensemble motion planning on a tree, J. Algorithms, to appear.

[FHK] G. N. FREDERICKSON, M. S. HECHT, AND C. E. KM, Approximation algorithms for some routing
problems, SIAM J. Comput., 7 (1978), pp. 178-193.

[FW] M. L. FREDMAN AND D. E. WILLARD, Trans-dichotomous algorithms for minimum spanning trees
and shortest paths, in Proc. 31st IEEE Symp. on Foundations of Computer Science, St. Louis,
MO, October 1990, pp. 719-725.

[GGST] H.N. GaBow, Z. GALIL, T. SPENCER, AND R. E. TARIAN, Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs, Combinatorica, 6 (1986), pp. 109-122.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 62-71, February 1993 006

A LOWER BOUND ON THE SIZE OF SHELLSORT SORTING NETWORKS*
ROBERT CYPHER'

Abstract. Shellsort is a sorting algorithm that is based on a set of parameters called increments. Shellsort
has been used both as a sequential sorting algorithm and as a sorting network. The central result of this paper
is that all Shellsort sorting networks based on monotonically decreasing increments require (N log? N/ log
log N) comparators. Previously, only the trivial (N log N) bound was known for this class of networks. The
lower bound obtained in this paper nearly matches the upper bound of O(N log? N) that was proven by Pratt.

Key words. Shellsort, sorting networks, parallel sorting, lower bounds

AMS(MOS) subject classifications. 68P10, 68Q20, 68Q25

1. Introduction. Shellsort is a sorting algorithm that was first proposed by D. L.
Shell in 1959 [11]. Shellsort is based on a sequence of integers Z = zj, 2x—1, * -, 21 that
is called an increment sequence. Different increment sequences yield sorting algorithms
with different complexities, so a great deal of effort has been devoted to finding the best
increment sequence possible.

Given an array of items A = A[1], A[2],---, A[N] and an increment sequence Z =
2k, Zk—1, " * *, 21, Shellsort sorts the array A by performing z;-sortsfor j = k, k—1,---, 1.
A zj-sort consists of partitioning the locations in the array A into equivalence classes
modulo z; and sorting the data in each equivalence class. Therefore, following the z;-
sort, for all ¢ where z; < @ < N, A[i] > A[i — 2;]. Itis required that z; = 1, so the
z1-sort completely sorts the file. In general, the increment sequence used for sorting N
items can depend on N. However, one common technique is to define a single infinite
sequence and to use, in decreasing order, those elements in this sequence that are less
than N. Increment sequences that are created in this manner are said to be uniform.

The z;-sorts are implemented by using insertion sort [5]. Insertion sort sorts a set of
items by processing the items from left to right. Each item w is processed by comparing
it to the items to its left until an item v is found that is smaller than w (or the list of items
to the left of w has been exhausted). Item w is then inserted immediately to the right of
v, and the items that were between v and w are moved one position to the right. Thus
for any item w, if there are c items to the left of w that are larger than w, then ¢ + 1
comparisons are required. Although insertion sort is an inefficient sorting algorithm (it
requires ©(N?) time to sort N items in the worst case), it is used because it performs
well when the data are nearly sorted. It is hoped that the z;-sorts will be efficient because
the sorts performed by the earlier increments will have left each item near its correct,
sorted position.

Shellsort has been studied both as a sequential sorting algorithm and as a technique
for creating sorting networks. A sorting network is a collection of comparators that are
wired together in such a way that when a set of items is placed on the input wires, the
items appear in sorted order on the output wires. A comparator is a device that takes
two inputs and produces two outputs; the smaller input is placed on the first output
and the larger input is placed on the second output. Shellsort can be used to create a
sorting network by implementing each of the insertion sorts with a sorting network [5].
An example of a sorting network that performs an insertion sort is given in Fig. 1.

*Received by the editors May 14, 1990; accepted for publication (in revised form) December 3, 1991. This
research was supported in part by a National Science Foundation Graduate Fellowship.

'fDepartment K54/802, IBM Research Division, Almaden Research Center, 650 Harry Rd., San Jose,
California 95120.

62

SHELLSORT LOWER BOUND 63

Inputs Outputs

F1G. 1. Insertion sort network. Horizontal lines represent wires, and vertical lines represent comparators.
Each comparator places the smaller of its inputs on its upper output wire and the larger of its inputs on the lower
output wire.

The size of a sorting network is the number of comparators that it contains, and
the depth of a sorting network is the maximum number of comparators through which
an item may pass. Sorting networks are important because their nonadaptive nature
allows them to be implemented directly in hardware and also because of a result due to
Leighton [7]. Leighton has shown that any small-depth sorting network can be used to
create a fast sorting algorithm for a bounded-degree parallel computer.

An O(log N)-depth sorting network was created by Ajtai, Komlds, and Szemerédi
[1]. Their sorting network is very complex, and it has an extremely large constant of
proportionality associated with the O(log V) depth. A number of researchers have sug-
gested that Shellsort might provide a simple O(log N)-depth sorting network that would
be practical for realistic values of N [4], [10]. This paper proves that a fundamentally
new type of increment sequence will be needed if this goal is to be attained.

Two well-known results are helpful in understanding the behavior of Shellsort. First,
Knuth proved that if an array is u-sorted and then it is v-sorted, it will remain u-sorted
[2]. Second, from transitivity it follows that if an array is both u-sorted and v-sorted,
then it is also (u + v)-sorted [9]. These two results suggest the use of a data structure
that Pratt calls a template [9]. A template is a set of natural numbers that contains 0
and is closed under addition. Let Z = 2, 2,1, - -, 21 be a sequence of increments, and
let Y be the smallest template containing Z. If an array has been z;-sorted for all j,
k > j > 1, then it follows from the two results given above that the array is also y-sorted
for each y € Y. Thus templates provide a means of keeping track of all of the properties
implied by the above results. Templates have been used to obtain upper bounds on the
time requirements of Shellsort algorithms and on the size and depth of Shellsort sorting
networks. This paper shows that templates can also be used to obtain lower bounds on
the size of Shellsort sorting networks.

Shell used the increments | N/2|, [N/4], |N/8],-- -, 1. However, when [NV is a power
of 2 this sequence requires ©(N?) comparisons. Modifications to Shell’s increment se-
quence were suggested by Lazarus and Frank [6], Hibbard [3], and Knuth [5]. Papernov
and Stasevich showed that Hibbard’s increment sequence yields a sequential algorithm
that runs in O(N3/2) time [8]. All of the above modifications to Shell’s increment se-

64 ROBERT CYPHER

quence have the property that they are within an additive constant of a geometric se-
quence. Pratt proved that a large class of such nearly geometric sequences result in
©(N?/2)-time sequential algorithms [9]. Pratt also proposed using the uniform incre-
ment sequence consisting of all numbers of the form 237, where i and j are integers,
and he showed that these increments yield a sorting network with size O(N log® N) and
depth O(log® N) [9].

Sedgewick then proposed a uniform increment sequence that yields an O(N*/3)-
time sequential algorithm [10]. Although this is greater than the O(N log® N) sequen-
tial time required by Pratt’s sequence, Sedgewick’s sequence has O(log N) increments,
whereas Pratt’s sequence has ©(log> N) increments. The restriction to using O(log N)
increments is required if an O(NN log N)-time algorithm is to be obtained. Incerpi then
developed a uniform increment sequence with O(log N) increments that required

(0] (N +e/y/log N) comparisons for any e > 0 [4]. Finally, Weiss and Sedgewick proved

that Sedgewick’s sequence does require Q(N*/3) comparisons in the worst case [12],
[13]. In addition, Weiss and Sedgewick made a conjecture that, if true, would imply

that Q (N 1+e/y/log N) time is required by Incerpi’s sequence and by any sequence Z =

Zky Zk—1, "+, 21 for which z; = ©(a?) for some a > 1 [12], [13].

All of the increment sequences mentioned above are monotonically decreasing. In
fact, Knuth has called Shellsort the “diminishing-increment sort” [5]. Monotonically de-
creasing increments are natural because they sort larger sets of data as the data become
increasingly ordered. Monotonically decreasing increments thus provide a smooth tran-
sition from sorting small, very unordered sets to sorting large, very ordered sets. How-
ever, this paper shows that all Shellsort sorting networks with monotonically decreasing
increments are of size Q(N log? N/loglog N). Previously, only the trivial Q(N log N)
lower bound was known for this class of increment sequences.

Also, although the results presented here are for Shellsort sorting networks, they do
provide some insight into the sequential Shellsort algorithm. In particular, many proofs
of upper bounds on the sequential running time of Shellsort use templates to bound the
time requirements of the insertion sorts. Such proofs ignore the adaptive nature of the
sequential algorithm, so they actually imply an identical upper bound on the number
of comparators in the corresponding Shellsort sorting network. Given the results of this
paper, it is clear that such a proof will yield an upper bound that is (N log® N/ log log N)
if monotonically decreasing increments are chosen. It should be noted, however, that the
Q(N log® N/loglog N) bound applies only to the upper bound created by such a proof
technique and not to the actual running time of the sequential algorithm.

This paper is organized as follows. Section 2 contains definitions and notation that
are used throughout the paper, and §3 proves a connection between template costs (de-
fined in §2) and the number of comparators that a sorting network must have. In §4, the
relationship between the cost of an increment and the number of items that it adds to a
template is established. Section 5 proves a lower bound on the number of elements miss-
ing from a template, §6 proves a lower bound on the total template costs of any Shellsort
algorithm with monotonically decreasing increments, and §7 gives a lower bound on the
number of comparators required when monotonically decreasing increments are used.
Some conclusions and open problems are presented in §8.

2. Definitions and notation. The expression log N will be used to indicate log, N.
The set of nonnegative integers will be denoted by I. An I-set is any subset of I. Upper-
case letters will be used to name I-sets, and lowercase letters will be used for arbitrary
members of I-sets. An uppercase letter with the subscript [¢], where ¢ > 1, will be used

SHELLSORT LOWER BOUND 65

to indicate the ith smallest member of an I-set. For example, if Z is an I-set, then Zy
is the smallest member of Z. Given a nonempty I-set Z, Min(Z) = Zjy), and if Z is
finite, Max(Z) = Zjz). Given an I-set Z, the complement of Z, written Z,isI - Z.
Given an I-set Z, a positive integer u, and an integer v, Slice(Z,u,v) = {z € Z | z=v
(mod u)}.

An I-set Y is a template if it contains 0, it is closed under addition, and Y is finite.
Given a template Y, a positive integer u, and an integer v, Lack(Y, u, v) = |Slice(Y, u, v)|.
The cost of increment u with respect to template Y , written Cost(Y, u), is Lack(Y, u, 0).

Let D = d,,da,- - -, di be a finite sequence of nonnegative integers, and let Z be an
I-set where |Z| > k. The product of D and Z, written D ® Z, is Ele d;Z};). An integer
z is said to be representable by the I-set Z if there exists a finite sequence of nonnegative
integers D = dy,ds, - - -, dy where D ® Z = x. The span of an I-set Z, written Span(Z2),
is the I-set consisting of the integers that are representable by Z. The weight of a finite
sequence D = dy,dy,- -, dg, written Weight(D), is Zle d;. If u is representable by
Z, then Size(Z, u) is the minimum of Weight(D) taken over all sequences D such that
DG Z=u.

We will consider the input to a Shellsort sorting network to be an array of registers
A = A[l], A[2],---, A[N] that holds N items. Each comparator in the sorting network
will be viewed as performing a compare—exchange operation on a fixed pair of regis-
ters. The compare—exchange operation compares the contents of the two registers and
exchanges the contents if they are out of order. We will divide the comparators into a
sequential set of stages, each of which performs the z-sort for a given increment z. For
any [-set Z, the array A is said to be sorted by Z if for all z € Z, A is z-sorted. For
any I-set Z, Y is the template generated by Z if Y = Span(Z U {¢ € I | i > N}) (it
is easily verified that Y is, in fact, a template). Recall that if the array A is z-sorted for
each z € Z, then it must also be y-sorted for each y € Y (the integers greater than or
equal to N are included in Y because the array A contains only N data items, so it must
be y-sorted for all y > N).

3. Template costs and comparators. Throughout this section let Z be an I-set, let
Y be the template generated by Z, and let x be a positive integer. Also, let ¢ be the cost
of x with respect to template Y, and let L be any integer, where 1 < L < N. We will first
show that the cost of an increment with respect to a template can be used to put an upper
bound on the size of the sorting network stage that performs the sort for that increment.
It is easy to see that if the array A is sorted by Z, there are at most ¢ array locations ¢ such
thati < L, A[i] > A[L], andi=L (mod z). Therefore, when we perform the z-sort
each location L will have to be compared to at most ¢ other locations. As a result, the
stage of the network that performs the z-sort requires only O(Nc¢) comparators. Pratt
used a similar argument to prove the correctness of his sorting network [9].

Of course, we are trying to prove a lower bound on the size of Shellsort sorting
networks. In the remainder of this section we will show that the stage of the network
that performs the z-sort does, in fact, require (N¢) comparators.

LEMMA 3.1. For any integer L, 1 < L < N, there exists an assignment of values to the
array A such that Ais sorted by Z and forall i, 1 <1i < L,where L —i ¢ Y, Ali] > A[L].

Proof.LetE={i|1<i<LandL—ieY}letF={i|1<i<Land L-i¢Y},
andlet G = {i | L < i < N}. Assign values to A as follows. For each Ej; € E let
A[Ey;)) = i, foreach F;) € Flet A[Fj;)] = i+|E|, and foreach G|;; € Glet A[G] = i+L
(see Fig. 2). Note thatforalli,1 < i < L,where L — ¢ ¢ Y, A[{] > |E| = A[L].
Therefore, all that remains to be shown is that A is sorted by Z.

66 ROBERT CYPHER

1614 131211109 8 7 6 5§ 4 3 2 1 0

DADXIXIXL XX XX | X | X Template
[1]2[3]a11]5 |6 |12]7 |8 |13]14]9 | 15]16]10] 17] 18] 19] 20| Array

F1G. 2. Worst-case array for Shellsort.

Assume for the sake of contradiction that A is not sorted by Z. Then there exist 3
and j, where ¢ < j, A[i] > A[j], and j — ¢ € Z, which implies that j — i € Y. Note that
because ¢ < j and A[i] > A[j], ¢ and j cannot both be in E, they cannot both be in F,
and they cannot both be in G. Also, j ¢ G because this would require that A[j] > L and
A[i] < L. Furthermore, ¢ ¢ E because this would require that A[i] < |E|and A[j] > |E|.
Finally, ¢ ¢ G because this would require that ¢ > L and j < L. Therefore, i € F and
j € E. However, j € E implies that L — j € Y, and it was shown that j — ¢ € Y, so
(L—j)+(j—1%) =L—iecY (because Y is a template and is closed under addition),
which is a contradiction because i € F impliesthat L — i ¢ Y. O

- Recall that insertion sort works by performing a sequence of comparisons that insert
each of the items into the list. Also, recall that insertion sort performs all of the compar-
isons that insert a given item into the list before performing any of the comparisons that
insert the next item into the list. As a result, it is impossible for a single comparator in an
insertion sort sorting network to participate in the insertion of two different items. We
will use this observation to obtain a lower bound on the number of comparators required
by a single stage of a Shellsort network.

THEOREM 3.2. If A has been sorted by Z, © < N/2,and c = Cost(Y, z), then at least
Nc/24 comparators are needed to implement an z-sort of A.

Proof. If ¢ = 0, the proof is trivial. Otherwise, let m = Max(Slice(Y, z,0)) (that is,
m is the largest multiple of z that is not in Y'). There are two cases based on the value
of m.

Case 1: m < 3N/4. Let L be any integer where 3N/4 < L < N. From Lemma 3.1
all cregistersi, where 1 <i < Land L—i € Slice(Y,z,0), can be such that A[i] > A[L].
Thus immediately before A[L] is inserted it is possible that A[L — jz] > A[L] for all j,
where 1 < j < c. As aresult, at least ¢ comparators are needed to insert A[L] by using
an insertion sort. Because there are at least N/4 such integers L, because c comparators
are required for each L, and because no comparator can be shared by different values
of L, at least Nc¢/4 comparators are needed.

Case 2: m > 3N/4. Let U = Slice(1, z,0) (that is, U is the set of all nonnegative
multiples of z), and let V = {i € U | m/4 < i < 3m/4}. Let k = m/z, and note
that |V| is a function of k. Specifically, there are four cases. If k = 0 (mod 4), then
V| =k/24+1.Ifk =1 (mod 4),then|V|= |k/2|.Ifk =2 (mod 4),then|V|=Ek/2.
Ifk =3 (mod 4),then|V| = [k/2]. Inanycase, |V| > |k/2]. Note thatc < m/z =k,
so |V| > |¢/2]. Also, note that x ¢ Y (because z € Y would imply thatc =0), m ¢ Y,
and z # m (because z < N/2 and m > 3N/4),s0 ¢ > 2 and |¢/2] > ¢/3. Therefore,
V| > ¢/3.

Now let W = V' \ Y, and note that Max(W) < 3N/4. Because m ¢ Y and Y is
closed under addition, for any i € Y, where i < m, m —i ¢ Y. Also, forany ¢ € V,
m—i € V. Therefore, foranyi € YNV, m—i € YNV. Asaresult, |[W| > |V|/2 > ¢/6.
Let L be any integer where 3N/4 < L < N. From Lemma 3.1 all |W| > ¢/6 registers

SHELLSORT LOWER BOUND 67

i, where 1 < i < L and L — i € W, can be such that A[i] > A[L]. Thus immediately
before A[L] is inserted it is possible that A[L — jz| > A[L] for all j, where 1 < j < ¢/6.
As a result, at least ¢/6 comparators are needed to insert A[L] by using an insertion sort.
Because there are at least N/4 such integers L, because ¢/6 comparators are required
for each L, and because no comparator can be shared by different values of L, at least
Ne/24 comparators are needed. 0

4. Efficiency of increments. At any time during the Shellsort algorithm let the cur-
rent template be the template generated by the increments for which sorts have been
performed. Before the sorts for the first increment are performed, the current template
is missing N — 1 natural numbers, namely, 1,2, - -, N — 1. After the sort for the final in-
crement (which must be 1) is performed, the current template contains all of the natural
numbers. In this section we examine the relationship between the cost of an increment
and the number of items that it adds to the current template.

For the remainder of this section let Z be an I-set, let = be a positive integer, let Y’
be the template generated by Z, and let ¢ be the cost of x with respect to template Y.
Also, let Z' = Z U {z}, and let Y’ be the template generated by Z'.

THEOREM 4.1. Given the above definitions, |Y' \ Y| < zc.

.Proof. Let E = Y’ \ Y. Assume for the sake of contradiction that the claim is
false, in which case |E| > zc. Therefore, there must exist a u for which 0 < u < z and
|Slice(E, z,u)| > c. Let F' = Slice(E, z, uw).

It will first be shown that for each f € F there exists a t € Slice(Y, z,u) where
t < f. Let f be an arbitrary member of F, and note that f € E. Therefore, f is not
representable by Z, but f is representable by Z’. Let the sequence D = dy,d, - - -, d; be
such that D® Z’ = f. Note that if Z[’i] = z, then d; > 0 because f is not representable by
Z. Let the sequence H = dy,---,d;i—1,0,d;41,---,dj,andlett = H® Z'. Thent < f,
tis representable by Z,and t = f (mod z). Therefore, t € Slice(Y, z,u) and t < f.

Now let m = Min(Slice(Y, z, u)). By the argument given in the previous paragraph
Min(F) > m. Foranyi, 1 <i < |F|, F; —m ¢ Y because F};) ¢ Y and Y is closed
under addition. But Fj; —m =0 (mod z), so |F| < Lack(Y,z,0) = Cost(Y,z) = c,
which is a contradiction. O

We can now outline the remainder of the lower-bound proof. We have shown in
Theorem 3.2 that lower bounds on increment costs can be used to obtain lower bounds
on the size of Shellsort sorting networks. We have just seen that only large increments
are efficient in adding items to the current template. That is, for a given cost a large
increment is capable of adding more new items to the template than will a small incre-
ment. Therefore, to obtain a small sorting network we should use large increments to
add items to the template. Therefore, when using monotonically decreasing increments
we should add as many items as possible to the template with the increments in the be-
ginning of the sequence. However, we will show in Theorem 5.2 that there will always be
a large number of items missing from the template. As a result, monotonically decreas-
ing increments cannot be efficient. The remaining lemmas and theorems formalize this
argument.

5. Elements missing from templates. In this section we will prove a lower bound
on the number of elements missing from a template. Throughout this section let Z be a
nonempty I-set with Min(Z) > 1 and Max(Z) < N, let Y be the template generated by
Z, and let = Min(Z).

LEMMA 5.1. For any k such that Yjx) < N, Y5 > zlogk/log(|Z| + 1).

68 ROBERT CYPHER

Proof. Assume for the sake of contradiction that the claim is false, so there exists a k
such that Yjz) < N and Yjy) < zlogk/log(|Z| +1). Let E = {Y}; | 1 < i < k}. For each
Y € E, Y};) < N,soY}; € Span(Z). Let j be such that Y};; € E, and for all i, where
1 <14 < k,Size(Z,Y};)) < Size(Z,Y};)). Let h = Size(Z, Y};}). Note that there are at most
(|Z|+1)" integers i € Span(Z) such that Size(Z,4) < h. Therefore, k = |E| < (|Z|+1)",
so h > logk/log(|Z| + 1) and zlogk/log(|Z| + 1) < zh < Y|;; < Y, which is a
contradiction. a

THEOREM 5.2. If1 < |Z| < log? N, N'/2 < & < N/logN, and N > 254 then
|Y| > xlog N/16loglog N.

Proof. Let u = Max(Y). Note that for all i, u + 1 < i < u + z,i € Y. Therefore,
u+x > Y and u > Y — z. Because z < N/logN, zlogz/log(|Z] + 1) < N.
Therefore, either Y|;) > N > zlogz/log(|Z| + 1) or Y{;; < N, and from Lemma 5.1
Y] > zlogz/log(|Z| 4 1). Thus in either case u > z(log z/log(|Z| + 1) — 1). Because
logz > 1log N and log(|Z| + 1) < 2loglog N, logz/log(|Z| + 1) > log N/4loglog N
and u > z(log N/4loglog N — 1). Because N > 264 log N/4loglog N > 8/3 and
(log N/4loglog N) — 1 > (log N/4loglog N)/2 = log N/8loglog N. Therefore, v >
zlog N/8loglog N. Because Y is closed under addition and u ¢ Y, foreachi,0 < i < u,
eitheri ¢ Y oru — i ¢ Y. Therefore, |Y| > u/2 > xlog N/16loglog N. 0

6. Template costs for monotonic increments. In this section we prove alower bound
on the total template costs incurred when monotonically decreasing increments are used.
Throughout this section let N > 254 and let Z be an I-set where Min(Z) = 1 and
Max(Z) < N. Let k = |Z|, where 1 < k < log? N. Let Ryy; = 0 and for all 4,
where 1 < i < k,letR; = {z € Z | z > Z}. Foralli,where 1 < i < k+1, let
Y; be the template generated by R; and let b; = |Y;|. For all 4, where 1 < i < k, let
¢; = Cost(Y;41, Z[i]).

LEMMA 6.1. Foralli,1 <1 < k, if N'/2 < Zj;) < N/log N, then c; > (biy1/b; —
1)(log N/161oglog N).

Proof. From Theorem 4.1 ¢; > (b;4+1—b;)/Z};). From Theorem 5.2b; > Z; log N/16
loglog N, so Z|;; < 16b;loglog N/log N and ¢; > (biy1 — b;)log N/16b;loglog N =
(bi+1/b; — 1)(log N/16loglog N). a

LEMMA 6.2. For any u and v where N*/% < Z,) < Zj,_1) < N/log N,

v—1

> ¢ > (log N/16loglog N)(v — u)((by/bu) /=) — 1).

i=u

Proof. From Lemma 6.1

v—1 v—1
Zci > Z(bi+1/bi —1)(log N/161oglog N)
i=u i=u o1
= (log N/16loglog N) (u—’v +Zbi+1/bi> .

Note that

v—1
T bis1/b: = bu/bu.

SHELLSORT LOWER BOUND 69

Because the arithmetic mean is always greater than or equal to the geometric mean,

(1/(v—w)) 2_: bis1/bi > (by/by)/ @)

and
v—1
Db /bi 2 (v =) (by/bu) /Y.
Therefore,
v—1
Zci > (log N/16loglog N) (v — u)((by/by)/ "~ —1). a
i=u

THEOREM 6.3. Ez , ¢i > log? N/192loglog N.
Proof. If Max(Z) < N 12, then from Theorem 4.1

k

N_1=Z(i+1 b)

i=1

< Zciz[i]

i=1
k

<. Z CiN1/2a
i=1
50 % ¢, > (N —1)/N'/2 > log? N/1921oglog N.
If Max(Z) > N'/2, then let u and v be such that Z,; is the smallest member of Z

that is greater than N'/2 and Z,,) is the largest member of Z that is less than or equal to
N/log N. There are two cases.

Case 1: b, > N'/2log? N. From Theorem 4.1

NY210g2 N < b,

u—1
= (b1 —bi)

=1

< Z ciZy)

i=1

u
< Z ciNl/z,
=1
50 Y e; > log? N and 3%, ¢; > log? N/192loglog N.
Case 2: b, < N'/21og®? N. Note that if v = k, then b,,; = N — 1, whereas if
v < k, then because Z, 1) > N/log N, b,y1 > N/log N — 1. So in either case b,+1 >
N/log N —1 > N/log®> N. From Lemma 6.2

Z c; > (log N/16loglog N)(v — u + 1)((bv+1/bu)1/(v—-u+1) 1).

70 ROBERT CYPHER
Lett = v — u + 1, and note that ¢ < k < log® N. Then

(log N/161loglog N)(v — u + 1)((bys1/by)Y @4+ — 1)
> (log N/16loglog N)(t)((N'/?/log* N)¥/t — 1)
> (log N/16loglog N)(t)(N/8 — 1).

Because t(N1/8 —1) = (e N/8t—1) and e® = 3 o0, x¢/i!, t(e™N/8—1) > t(In N/8t) =
In N/8 > log N/12. Therefore,

k v
Zqzzci
=1

i=u

> (log N/16loglog N)(t)(N'/% — 1)
>log? N/192loglog N. O

From Theorem 6.3 it is clear that any upper bound on the sequential running time
that is based on template costs and that uses monotonically decreasing increments will
be at least Q(N log> N/ loglog N).

7. Network sizes for monotonic increments. This section establishes a lower bound
on the size of Shellsort sorting networks when monotonically decreasing increments are
used. The proof is based on Theorems 3.2 and 6.3.

THEOREM 7.1. Shellsort sorting networks with monotonically decreasing increments
require Q(N log® N/ loglog N) comparators to sort N items.

Proof. It will be shown that when N > 264 at least N log® N/4608loglog N com-
parators are required. Let Z be the set of increments that are used, and let £k = |Z].
Let Ry1y = 0, and for all i, where 1 < i < k,let R; = {z € Z | z > Z;}. For all4,
where 1 < i < k, let Y; be the template generated by R;. For all ¢, where 1 < i < k, let
c¢; = Cost(Y;41, Z};)). It will be assumed that for all i, where 1 < i < k, ¢; > 1 because
increments that have no cost have no effect on the order of the data items. Two cases
will be considered.

Casel: k > log2 N. Because for each i, where 1 < i < k, ¢; > 1, from Theorem 3.2
at least N/24 comparators are required to perform each Z;-sort. Therefore, a total of

at least E?=1 N/24 > Nlog® N/24 comparators are required.

Case 2: k < log? N. From Theorem 3.2 at least (N/24) Ele ¢; comparators are re-
quired; from Theorem 6.3 Zle ¢; > log? N/192loglog N, so N log> N/4608 log log N
comparators are required. O

8. Conclusions and open problems. We have shown that all Shellsort sorting net-
works based on monotonically decreasing increments require Q(N log? N/ loglog N)
comparators. This lower bound nearly matches the upper bound of O(N log® N) that
was proved by Pratt. One open problem is the removal of the ©(log log V) gap between
these lower and upper bounds.

Another interesting open problem consists of removing the restriction that the in-
crements be monotonically decreasing. Although the case of monotonically decreasing
increments is an important special case, it is natural to ask if a similar lower bound ap-
plies when the increments are not monotonically decreasing. The results of §3, which
establish the relationship between template costs and comparators, and the results of

SHELLSORT LOWER BOUND 71

§4, which bound the efficiency of increments, are independent of whether or not the in-
crements are monotonically decreasing. However, the results of §5, which give a lower
bound on the number of items missing from a template, are stated in terms of the small-
est increment that has been used. As a result, if the increments are not monotonically
decreasing, this lower bound is seriously weakened. In fact, a single very small increment
will render the lower bound given in §5 worthless. As a result, a stronger theorem on the
number of items missing from a template appears to be needed in order to address the
issue of nonmonotonic increments.

Acknowledgment. I am very grateful for the helpful comments and recommenda-
tions given by the anonymous referee.

REFERENCES

[1] M. Astar, J. KOMLOS, AND E. SZEMEREDI, An O(n log n) sorting network, Combinatorica, 3(1983), pp.
1-19.
[2] D. GALE AND R. M. KARP, A phenomenon in the theory of sorting, J. Comput. System Sci., 6(1972), pp.
103-115.
[3] T. HIBBARD, An empirical study of minimal storage sorting, Comm. ACM, 6(1963), pp. 206-213.
[4] J. INCERPY, A study of the worst-case of Shellsort, Ph.D. thesis, Department of Computer Science, Brown
University, Providence, RI, 1985.
[5] D. E.KNUTH, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.
[6] R.LAzZARUS AND R. FRANK, A4 high-speed sorting procedure, Comm. ACM, 3(1960), pp. 20-22.
[71 T LeiGHTON, Tight bounds on the complexity of parallel sorting, IEEE Trans. Comput., C-34(1985), pp.
344-354.
[8] A.PAPERNOV AND G. STASEVICH, A method of information sorting in computer memories, Prob. Inform.
Transmission, 1(1965), pp. 63-75.
[9] V. R. PrATT, Shellsort and sorting networks, Ph.D. thesis, Department of Computer Science, Stanford
University, Stanford, CA, 1972.
[10] R. SEDGEWICK, A new upper bound for Shellsort, J. Algorithms, 7(1986) pp. 159-173.
[11] D. L. SHELL, A high-speed sorting procedure, Comm. ACM, 2(1959), pp. 30-32.
[12] M. A. WEiss, Lower bounds for Shellsort, Ph.D. thesis, Department of Computer Science, Princeton
University, Princeton, NJ, 1987.
[13] M. A. WEIss AND R. SEDGEWICK, Tight lower bounds for Shellsort, Tech. Report CS-TR-137-88, Depart-
ment of Computer Science, Princeton University, Princeton, NJ, 1988.

SIAM J. COMPUT. (©) 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 72-78, February 1993 007

A NOTE ON POSET GEOMETRIES*
JOEL FRIEDMANt

Abstract. This note describes how varying the geometric representation of a poset can be applied to “poset
balancing.” It is shown that the 1/3, 2/3 balancing property holds for a certain class of posets whose number of
relations is sufficiently small, in a certain sense.

Key words. partial order, linear extension, poset balancing

AMS(MOS) subject classifications. primary 06A10; secondary 68P10

1. Introduction. Given aposet (partially ordered set) for elements z and y, let p(z <
y) denote the fraction of completions of the partial order to a total order in which z < y.
Fredman’s conjecture, in connection with [Fre76] (also conjectured by Linial in [Lin84]),
is that any nontotal poset (i.e., poset that is not a total order) has two elements, z, y, for
which 1/3 < p(z < y) < 2/3. This conjecture arose in the context of studying the in-
formation theoretic bound on the complexity of sorting the elements of the poset. The
nontrivial nontotal three-element poset shows this conjecture to be as optimistic as pos-
sible.

To date the conjecture is unresolved, but using convexity in geometric realizations of
the posets, such as the techniques of Stanley in [Sta81], theorems have been proven with
the 1/3,2/3 replaced by different constants. In [KS84], Kahn and Saks, proved the above
conjecture with 3/11,8/11 as constants. In [KL88], Kahn and Linial gave a simpler proof
of the conjecture with 1/(2e), (2e — 1) /(2e) as constants (a referee has informed me that
Khachian had earlier given a proof similar to that of [KL88] with constants e 2, 1 —e™2).

Both proofs are based on convex geometry involving a geometric realization of S,
the group of permutations on n objects. The point of this note is to remark that by varying
the geometries one can sometimes get better results. This is definitely true when the
poset has few enough relations in a certain sense. The geometries we use are suggested
by the standard realization of .S, as its associated Coxeter complex (see, e.g., [Ron89]).
We combine the varying geometries with the simplified technique of [KL88] to obtain
improved results for such posets. In this note we prove the following theorem.

THEOREM 1.1. For any € > 0 there is a C such that the following is true. Let P be a
poseton {zi,...,T,},and let a; and b; denote the number of elements, respectively, > and
< than z; in P. If for every permutation o € S,, we have

(0@ n+1-0()
>
Z(a,‘+1+ bi+ 1)—C”’

i=1

then P has elements z,y with (1/e) — e < p(xz < y) < 1/2.

This appears as Theorem 3.6 of §3 and is proven there. This is the precise sense of
P having “few enough relations” mentioned earlier. As applications we have Theorem
1.2.

THEOREM 1.2. For any € > 0 there is a C such that if P either (1) has at least C+/n
maximal (or minimal) elements or (2) has no chain of length > 2log,logn — C, then P
has elements z,y with (1/e) — ¢ < p(z < y) < 1/2. Forany ¢ > 0and v > 0, there is a

*Received by the editors November 1, 1990; accepted for publication (in revised form) November 25, 1991.
The author also wishes to acknowledge the National Science Foundation for supporting this research in part

under a Presidential Young Investigator Award grant, CCR-8858788.
tDepartment of Computer Science, Princeton University, Princeton, New Jersey 08544.

72

A NOTE ON POSET GEOMETRIES 73

> 0 such that the same conclusion holds if P has some vn of its elements each unrelated
to at least (1 — p)n other elements.
This appears as Theorems 3.5, 3.7, and 3.8 of §3.

We also note that other special cases of the poset (1/3, 2/3) conjecture have been re-
solved. In [Lin84], Linial proves the conjecture for posets of width 2. In [Kom], Komlés
proves that for any € > 0, there is a function f.(n) = o(n) such that any poset with at
least f(n) minimal elements has two elements, z, y, such that [p(z < y) —1/2| < ¢; here
f(n)/n decreases to zero exponentially fast in the inverse of some Ramsey-type function
of n. Also Kahn and Saks [KS84] have conjectured that as the width of the poset tends
to infinity, a |p(z < y) — 1/2| < o(1) balancing result should hold.

2. Variants of a standard model. A standard geometric model of S, is its associ-
ated Coxeter complex (see [Ron89]). One views this as a triangulation of the (n — 2)-
dimensional sphere. The convex polytope determined as the convex hull of the simplices
of this triangulation (this polytope looks like a beachball) is a realization of S, such that
the realization of every poset is convex. Of course, there is no reason to insist that this
polytope’s vertices all lie on one sphere. By moving certain vertices further or closer to
the center, we get different convex polytopes.

So consider n points vy, . .., v, € R"~! not contained in any hyperplane of dimen-
sion n — 2. Every point v € R"~! can be uniquely written as

(21) V= Zaivi, with Zai =1.

For a permutation of {1,...,n}, 0 = {i1,...,i,}, let

A, = {Zaivilail Z"'Zain}-

If U is any convex body, say, containing the v;, then 0 — U, = A, N U is a realization
of S,, in which every poset corresponds to a convex subset of U. U, will be adjacent
to Uy, i.e., will share a facet (i.e., an (n — 2)-dimensional face), if and only if o and 7
differ by some transposition (3, j), and in that case the facet lies on the hyperplanes H;;
containing (v; 4+ v;)/2 and all v; with k& # 4, j. When no confusion will occur, we will
often simply refer to this facet as H;;.

For future reference, the o;’s in (2.1) are called the barycentric coordinates of v (with
respect to the v;’s). If U is the simplex spanned by the v;’s, the barycentric distance of v
to a facet, F, of U (i.e., a simplex spanned by any n — 1 distinct v;’s), is the barycentric
coordinate of v with respect to the v; not contained in F.

We now make some explicit calculations to describe various choices of U. For sim-
plicity, we perform them in R™ restricted to the hyperplane z; + --- + =, = 1. Fora
subset S C {1,...,n}, let es be the vector that is 1 on the ith coordinate if i € S and 0
elsewhere. Let Q = (1/n,...,1/n). For positive real 8y, . .., 6, consider the collection
of points

vs = fBges + (1 - |S|9S)Q

with 6s = 6|, ranging over all nonempty proper subsets, S, of {1,...,n}. Clearly all
these vertices lie on the hyperplane z; + - - - + z,, = 1. Let U be their convex hull.

LEMMA 2.1. The following two conditions are equivalent: (1) no vg is in the interior of
Uand (2) foralli < j

74 JOEL FRIEDMAN

(22) i0,~ S]01 and (n - ’&)0, Z (n —j)ej

Proof. By symmetry the first condition is equivalent to saying that for any |S|, the
centers of mass of the sets

Ejp = {vr [IT 08| = j,|T - S| = k}

for all k&, j lie between (or on) Q and vs. Each of these gives an inequality between 6, g
and 6,4, which is exactly of the form of those of (2.2) (except when j + k = |S|, which
is trivial), and conversely each inequality in (2.2) arises in this way. O

For future reference we note that the distance of vg to a half plane H;; is just 65/ V2
if exactly one of ¢, j are in .S (and 0 otherwise); this is seen by noting that the reflection
through H;; merely exchanges the ith and jth coordinates. We also note some familiar
choices of ;. The choice §; = 1/i and §; = 1/(n — ©) are simplices with vertex sets {vg}
ranging over S of respective sizes 1 and n — 1. Choosing the vs’s to be equidistant from
Q gives

n

b=\Vim—o

We now describe some features of varying the geometry. First, we make the obser-
vation that in any poset there exists an ordering of the elements o = {z1,...,z,} such
that p(z; > z;41) > 1/2 for all <. We call such a o optimal. Its existence follows from
the fact that any tournament has a Hamiltonian path. This statement also implies that
p(x; > x;) > 2/3 forall i > j if P is a counterexample to Fredman’s conjecture. The
point to our method is that by fixing P and such an ordering we can choose the geometry
best suited to the situation at hand. We will apply this to the centroid method used in
[KS84] and [KL88], using the simplified technique of the latter. We explain this in the
next section.

It is sometimes easier to visualize the problem and amusing, if not particularly use-
ful, to state the poset problem in the “real-estate” terminology (see [Ron89]). Given a
Coxeter complex, there are two natural notions of convexity for a subset of chambers—
that of metric convexity and that of being an intersection of half-apartments. It is easy
to see that these two notions are equivalent; in the case of 9, a convex set is merely
a poset, and our question is to try to find a wall that divides a given convex set P into
roughly equal parts. For example, since any collection of > 2 chambers is nontrivially
divided by some wall, it follows by descending induction on % that for all £ > 2 there is
a collection of < k chambers all of whose bounding half-apartments contain more than
half of P; this again proves the existence of an optimal o.

3. Centroid type arguments. We review the techniques in [KL88]. They start with
the observation given below.

LEMMA 3.1. Let C be a convex body in R™ such that the centroid of C has x; co-
ordinate —o. and contains points with x, coordinates u and —w, with some u,w,a > 0.
Then

m—1
|C N {z1 >0} . 1 1
31 =1="0 s g _ -
o Pl L s | Ty

A NOTE ON POSET GEOMETRIES 75

Furthermore the right-hand side above is minimized at U = u,W = wifu > u* and
otherwise at U = u*, W = w, where

X wm(w —a(m+ 1))

w+ a(m? —1)

Proof. The proof is a simple argument that shows that the worst case C is a “double
cone,” in the spirit of Mityagin (see [Mit68]). Calculating the worst case volume ratio
on this basis is easy and yields (3.1), which is essentially straight from [KL88]. Differen-
tiating in U and W yields the second part, using the fact that w > (a(m + 1) + u)/m
always holds in the above situation. O

If @ = 0 in the above, the above volume ratio is at least 1/e, which is Mityagin’s
result. So we can expect volume ratios close to this if « is small enough.

The argument in [KL88] is as follows. Fix a realization of S,, as in the previous
section. Let o be an optimal total order, and let ¢ be the centroid of the poset P, where
we identify P with its realization. We can assume ¢ € A, (or else we can apply Mityagin’s
result), so consider ¢’s barycentric coordinates with respect to the vertices of A,. If H;
is a facet of A, with ¢ and j related in P (i.e., either ¢ < j or ¢ > j in the partial
ordering), then P itself lies to one side of H;; and it easily follows that the barycentric
distance of c to H;; is at least 1/n. Hence, there must exist some facet, H;;, of A, whose
barycentric distance is < 1/n such that ¢, j are unrelated in P, and in particular A, lies
in P, where ¢’ is o followed by the transposition (¢, 7). Then we can apply Lemma 3.1
withm =n — 1,u = w = 1,a = 1/(m + 1), which gives a volume ratio > 1/(2e).

Actually, the realization used in [KL88], [KS84], and [Sta81] is different from ours;
namely, they use the cube [0, 1]* with A, being the set 2,1y < -+ < Zy(n). In this
realization, when H,; is a facet of A, there is never any point in P that is further away
from H;; than one of the vertices of A,. If we use our realizations, then it can happen
that some of P’s points are further away, and we can get better results. This can be
guaranteed to be the case when P is “sufficiently sparse.”

More precisely, recall from the last section that the distance from a vertex vg to is
proportional to §s. The choice of §; = 1 would yield a situation like the cube realization,
but varying the ,’s allows some improvement. Varying the 6;’s involves slightly different
applications of Lemma 3.1, namely, those outlined in the following lemma.

LEMMA 3.2. For any positive € there is a positive § = §(e) such that if, in Lemma 3.1,
o is less than du/m or bw/m in Lemma 3.1, then

|C N {z1 > 0} S 1_6'
CI T
Proof. This is an easy calculation. If we have (m + 1)a/U < 6 for some small §

(slightly different from the § in the statement of the lemma), then the right-hand side of
(3.1) with U = u is bounded below by

m—1
6 W w -
1+#t_1+(m—liu 1+

By substituting ¢ = W/u and differentiating, we can see that for any fixed m there is a
6 making the above expression > (1/e) — € for all positive W. On the other hand, for

76 JOEL FRIEDMAN

large m the above expression is

1 1
> (1 1)) —a+s) wru
_< +O())e € 1+vuva

and as before we see that this is > (1/e) — e for m sufficiently large and some positive
6 (independent of m). This proves the first case of the lemma. In the second case, we
write (m + 1)ao — W < —(1 — §)W and proceed similarly, showing that a small enough
6 yields the desired lower bound. O

Returning to the situation at hand, given a poset P fix settings of the 6,’s, consider
any optimal o = (z1,...,Z,), and let ¢ be the centroid of P. Being interested in bounds
of the form 1/e,1 — (1/e) or worse, we can assume that c lies in A,. The vertices of A,
are vg, with S; = {z;,...,2;},1 <i<n—1. Let

n—1
c= E Vg, (g,
i=1

be the barycentric representation of c in A,. For each i fix a set T; that contains exactly
one of x;, z;+1 and with vz, € P; usually we’ll take T; to be the smallest or largest such
set, depending on the choice of 6;’s. T; is any set whose elements are not < any element
not in T; (in the partial order P).

COROLLARY 3.3. If x; > x;y; in P, then

1 6Or,
D — ",
asi_n—lgsi

If not, then for any € > 0 we have

1 6r,

s, 2 6(6)77, —10g,’

unless p(x; < z;41) > (1/€) — ¢ for § = 6(€) as in Lemma 3.2.

Proof. 1In the first case, the facet, H, of A, opposite vg,, bounds P, and yet there is a
point of P, vr,, whose distance to H is 6, /v/2. ¢’s distance to H must be atleast 1/(n—1)
of T;’s distance to H. On the other hand, c’s distance to H is precisely as,8s, /v/2.

The second case follows from Lemma 3.2, with similar distance considerations. [

COROLLARY 3.4. If

i 0T n—1
. LI
(32) DO bl PR

=1

then there exists an i with p(z; < z;41) > (1/e) — €

We now seek situations in which we can guarantee that (3.2) will hold for appropriate
0,-’5.

THEOREM 3.5. Forany € > 0, there is a C such that if P contains at least C\/n maximal
elements, then there exists elements z, y

1 1
Z_e< <=,
; 6_10(-'16<y)_2

ANOTE ON POSET GEOMETRIES 77

Proof. Take 6; = 1/i in the above. If, in the above circumstances, z; is maximal,
then taking T; = {z;} gives 67, /0s, = |S;|. Hence,

for sufficiently large C. 0
More generally we have the following theorem.
THEOREM 3.6. For any € > 0, there is a C such that the following is true. Let P be

a poset on {x1,...,T,}, and let a; and b; denote the number of elements in P that are,
respectively, > and < than x;. If for every permutation o € S,, we have
n . .
o) n+1-0()
. >
(33) Z(ai+l+ b; +1 2 Cn,

i=1

then P has elements x, y with (1/e) —e < p(z < y) <1/2

Proof. Consider the two choices for 6;, 1/i and 1/(n — 1). Taking C to be 2/5(e), we
find that if (3.3) holds, then we can apply Corollary 3.4 for one of these two choices of
0;. O

While the condition in Theorem 3.6 requires optimizing over o and is not entirely
explicit, in many cases it is not hard to check that it holds, such as when there exist C'y/n
maximal elements. We give some other examples to which Theorem 3.6 can be applied.

THEOREM 3.7. For any € > 0, there is a C' such that the condition (and therefore
conclusion) of Theorem 3.6 holds if every chain in P has length < C' + 2log, log n.

THEOREM 3.8. Forany €,v > 0, there is a u > 0 such that the condition (and therefore
conclusion) of Theorem 3.6 holds if some vn of P’s elements are each unrelated to more
than (1 — p)n (possibly different) elements of P.

Proof. For the latter theorem, each element z; unrelated to more than (1 — x)n has
both a; and b; less than un. Hence, it suffices to chose u so that v/u exceeds C/(e) of
Theorem 3.6. To prove the former, let X; be the set of nodes whose longest chain from
a maximal element is of length ¢ + 1; for example, X; is the set of maximal elements.
Then any two elements of any X; are unrelated. Then, setting n; = |X;|, we have

—2 >N i+ + — -,
o it i=1 imnt1 UL +1 immgmgp M T2 F 1
which, within a constant, is
2 2
n n
(3.4) >ni+ 24240
ny no

A similar estimate holds for the sum in (3.3) involving the b;’s. Now let & be the length of
the longest chain in P. If the condition for Theorem 3.6 is not met, then the expression
in (3.4) must be bounded by Cn for some constant C. Then we conclude n; < +/Cn and
then ny < (Cn)3/* and more generally

n; < (Cn)1= /%),

Now let k be the length of the longest chain in P. Applying the same argument to the
sum in (3.3) involving the b;’s, we conclude that

nky1—; < (Cn)t =)

78 JOEL FRIEDMAN
for all j. Hence,
n=mny+ - +mng < k(Cn)' " T

and thus (k+1)/2 > log, log n+ C’. Hence, if k < C"” + 2log, log n, Theorem 3.6 must
apply. O

4. Concluding remarks. There are some other possible variants on these techniques.
For one thing, we can vary the g’s even over S’s of the same size. Of course, it may no
longer be true that the A,’s all have the same volume, but if we are only interested in
1/3,2/3 type results we might have some room for slight variations of volume.

On some level it seems appealing to phrase the poset question in terms of finding a
wall separating a convex set of chambers in a Coxeter complex into roughly equal sizes,
but it is not clear if this is of any use. It is easy to see that any convex set of a general
Coxeter complex on k generators has a wall separating it into sets of fractional sizes
between 1/(k + 1),k/(k + 1) and that this is the best one can say. From this point of
view, it is clear that for the poset problem one is making use of the special fact that most
of the generators of S,, commute.

Acknowledgment. The author wishes to thank Nati Linial for useful discussions.

REFERENCES

[Fre76] M. FREDMAN, How good is the information theory bound in sorting? Theoret. Comput. Sci., 1
(1976), pp. 355-361. }

[KL88] J. KAHN AND N. LINIAL, Balancing extensions via Brunn—Minkowski, Tech. Report, Rutgers Uni-
versity, New Brunswick, NJ, November 1988.

[Kom] J. KOMLOs, A strange pigeon-hole principle, preprint.

[KS84] J. KAHN AND M. SAKS, Balancing poset extensions, Order, 1 (1984), pp. 113-126.

[Lin84] N. LINIAL, The information theoretic bound is good for merging, SIAM J. Comput., 13 (1984), pp.
795-801.

[Mit68] B.S. MITYAGIN, Two inequalities for volumes of convex bodies, Math. Notes, S (1968), pp. 61-65.

[Ron89] M. RONAN, Lectures on Buildings, Academic Press, New York, 1989.

[Sta81] R.P. STANLEY, Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Combin.
Theory Ser. A, 31 (1981), pp. 56-65.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 79-101, February 1993 008

AN O(n) ALGORITHM FOR DETERMINING THE SUBREGION-TREE
REPRESENTATION OF A RECTANGULAR DISSECTION*

SUKHAMAY KUNDU*

Abstract. A rectangular dissection is a partition of a rectangular space R into n > 1 disjoint rectangles
{r1,72,---,mn}. A Tw-plan is a dissection that is obtained by repeated application of the (1) horizontal,
(2) vertical, (3) left-spiral, and (4) right-spiral partitioning operations. Two common ways of representing a
T-plan are the wall representation w(D) and the subregion-tree representation t(D). It is known [S. Kundu,
Comm. ACM, 31 (1988), pp. 752-763] that these two representations are equivalent in that one can be uniquely
determined from the other. This paper presents an optimal O(n) algorithm for constructing ¢(D) from w(D),
which improves the previous bound of O(n?) in [S. Kundu, Comm. ACM, 31 (1988), pp. 752-763}. The new
algorithm is based on a domination relationship among the walls, which is defined here and represented by a
digraph G, (D). The algorithm exploits the disjoint cycle property of G, (D) and the relationship between
the tree ¢(D) and the transitive reduction of the acyclic digraph obtained by merging the cycles of G, (D)
into distinct nodes. The new method of constructing the tree t(D) by means of the digraph G (D) can be
applied to an arbitrary class of dissections D that are generated by a finite family of partitioning operations that
satisfies certain natural restrictions. The complexity of the algorithm remains O(n) for many such families.

Key words. rectangular dissection, subregion representation, wall representation, acyclic digraph, transi-
tive reduction, depth-first search

AMS(MOS) subject classifications. 68Q20, 68R10

1. Introduction. Let R be a rectangular space in a plane. A partition of R into
n > 1 disjoint rectangles {ry,r2,---,r,} is called a dissection. Each r; is called a basic
region. A dissection D is called a T-plan [2] if each junction point between a vertical line
and a horizontal line is a T-junction. The T-plans form models for space partitioning
in very-large-scale-integration (VLSI) design [10], [11] and for floor-space planning in
architectural design [2]-[9]. Figure 1(a) shows a T-plan consisting of 10 basic regions.
We assume that the top and the bottom horizontal lines of R extend to infinity on both
the left and the right (as indicated in the figure by the broken lines), although the exten-
sions are usually not shown. The regions outside R, which are labeled W (for west), E
(for east), N (for north), and S (for south), are called the external regions. A wall is a
maximal horizontal or vertical line segment. The set of walls of a T-plan D forms its wall
representation w(D); see Fig. 1(b), where each wall is written as a pair of ordered lists.
Each list consists of the basic and external regions adjacent to the wall from one side
and ordered from left to right or from top to bottom. A subregion of D is a rectangular
subspace that is the union of one or more basic regions. In general, a T-plan may not
have any nontrivial subregion other than R and the basic regions r;. Since either any two
nontrivial subregions of a T-plan are disjoint or one is contained in the other (with few
trivial exceptions; see §2), the subregions of a T-plan D form a tree structure ¢(D). The
basic regions of D form the terminal nodes of ¢(D), and the whole space R corresponds
to the root. The tree ¢(D) is called the subregion tree of D. In Fig. 1(c), the labels h and
v for the intermediate nodes of ¢(D) indicate the type of partitioning operation applied
to the associated subregion.

The tree representation ¢(D) is particularly important for a subclass of T-plans,
called T,-plans, which are obtained by repeated application of the (1) horizontal, (2)
vertical, (3) left-spiral, and (4) right-spiral partitioning operations. (See Fig. 2.) We re-
fer to these operations as h,v, s, and S partitions, respectively. The T, -plans that are

*Received by the editors July 15, 1988; accepted for publication (in revised form) December 4, 1991.
tComputer Science Department, Louisiana State University, Baton Rouge, Louisiana 70803.

79

80

SUKHAMAY KUNDU
N
We Wiz
w, - —] --=-
rs rs
r Wio
Wo
Ws rs
w re rq W3 E
ry ’y
Wi
wq Wg
rs T10
Wy e booro— o - e
W2 Wy
S
(@)
wy =<MN), (W, ry,r4,rs, E)> ws =<(ry), (r)> wyg =<(rg,rs), (re, 77, 78)>
wo =<(W), (ry,ra,r3)> we =<(ri,rs,r3), (rs,re. r10)> wig = <(re), (r7)>
wi =<(W,r3,7,E), (S)> wq =<(rp, (r3)> wi =<(rg,r7,r9), (110>
wa =<(rs, rg, 79, r10), (E)> wg =<(rq), (rs, ro)> Wiz =<(ry), (rs)>
wis =<(rg), (ro)>
(b)

©

FiG. 1. (a) A T-plan D consisting of 10 basic regions {r1,72,---,710}; (b) walls of the T-plan D; (©)

subregion tree t(D) of D.

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 81

formed by only k and v partitions are called acyclic; others are called cyclic. In [7]-[9]
we present several important properties of the tree representation, including the equiv-
alence between the wall representation and the tree representation. The main contribu-
tions of this paper are the following:

(1) It provides a linear O(n) algorithm for constructing the tree representation
t(D) of a T,-plan D from its wall representation w(D), where n is the number of ba-
sic regions in D. This is an improvement over the O(n?) algorithm given in [7]. (The
algorithm for converting t(D) to w(D) is O(n), as shown in [7].)

(2) The method developed here for constructing ¢(D) from w(D) is general. The
new method is applicable to an arbitrary class of T-plans that are generated by a finite
family of partitioning operations that satisfies certain natural restrictions. The complex-
ity of the algorithm remains O(n) for many such families.

D,

D,

(c) @)
FI1G. 2. The four partitioning operations {h, v, s, S} for generating a Tx-plan and the structure of their asso-
ciated subregion trees t(D); partitioning operations: (a) horizontal, (b) vertical, (c) left spiral, and (d) right spiral.

As a brief comparison of the new algorithm given here and the algorithm in [7],
we note that the algorithm in [7] constructs the tree ¢(D) in a top-down fashion, where
a basic region r; is processed once for every subregion containing it. This results in a
computation time proportional to the sum of the path lengths in ¢(D) from the root to
the terminal nodes, which can be as much as O(n?) in the worst case and as small as
O(n log;, n) in the best case. The best case occurs when the tree ¢(D) is highly balanced
and k > 2 is the minimum number of subregions created by a partitioning operator. The

82 SUKHAMAY KUNDU

algorithm given here employs a more global approach using the properties of cycles in the
digraph G,, (D), which represents the domination properties of walls and basic regions
in D (see §2). The digraph G,,(D) is determined directly from the wall representation
w(D). The new algorithm builds the tree ¢(D) in a top-down fashion as in [7], but it
does not explicitly construct subregions of D. The two special properties of the digraph
G, (D) that are exploited in the new algorithm are the following:

(1) The cycles in G,,(D) correspond to the spiral partitions in D, and, moreover,
no two cycles in G,,(D) have a node in common. This property allows us to determine
the cycles in G, (D) in linear O(n) time.

(2) The transitive reduction of the acyclic graph obtained by merging each cycle
of G,,(D) into a distinct node has a tree structure that is isomorphic to ¢(D) as an un-
ordered tree. The orderings among the children of nodes in ¢(D) are constructed by
using a partial order “<” that is also determined from the wall representation w(D).
The ordering information in the wall representation w(D) allows us to obtain the rele-
vant part of the ordering “<”, which is needed in the construction of ¢(D), by using only
O(n) time.

2. Basic concepts. We denote a wall w of a T-plan by a pair of lists w = (L1, L),
one list for each side of the wall. For a horizontal wall (h-wall) L, is the list of basic
regions and possibly some external regions adjacent to w from the above (north), and
similarly L, is the list of basic regions and external regions adjacent from below (south).
The regions in both L, and L. are ordered from the left to right. Likewise, for a vertical
wall (v-wall) L, is the list of basic regions and external regions adjacent to w from the
left (west) and L, is the list of basic regions and external regions adjacent to w from
the right (east). The regions in both L, and L, are now ordered from north to south.
We sometimes refer to L; as the first region list of w and to L. as the second region
list. In Fig. 1(b) the horizontal walls are labeled w, , w3, ws, - - -, and the vertical walls are
labeled wsq, w4, ws,- --. This odd—even labeling convention for the h-walls and v-walls
is used throughout the paper. The two horizontal walls bordering the external regions
N and S and the two vertical walls bordering the external regions W and E are called
the external walls. They are also referred to as the north wall, south wall, etc. The other
walls are called the internal walls. The four external walls are labeled w, , wo, w3, and wy,
respectively. Note that each external wall is easily identified by the presence of N, S, W,
and E in the first or the second region list.

We formally define the subregion tree t(D) of a Ti-plan D recursively as follows.
If D consists of only one basic region, region r,, then ¢(D) consists of a single node r;.
Otherwise, the root node of ¢(D) that corresponds to the whole rectangular space R
is labeled by one of the symbols 7 = h,v,s, or S, where 7 = m(R) denotes the top-
level partitioning operation applied to R. If the partition 7(R) decomposes R into k
subregions {R1, Ra, - -, R}, then the root node has k child nodes m;,1 < ¢ < k, one
for each subregion R;. For m(R) = s or S we have k = 5, and for 7(R) = h or v we
have £ > 2. The left-to-right ordering of the child nodes ; is determined according
to the schemas shown in Fig. 2. The subtree at each child node 7; is now determined
recursively by the T,-plan corresponding to the dissection on the subregion R;.! The
tree ¢t(D) is an ordered tree. Note that the only subregions of D for which there is no
node in ¢(D) are the ones that are formed by the union of m,2 < m < k, consecutive
subregions of a k-part horizontal or vertical partition. For instance, there is no node in
the tree in Fig. 1(c) corresponding to the subregion formed by the union of r; and ro;

1We use R; to denote both a subregion and the dissection of that subregion in D.

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 83

such a subregion may be called a trivial subregion. Henceforth, by subregion we shall
mean a nontrivial subregion, which may be a basic region in the extreme case.>

'We sometimes refer to an intermediate node of ¢(D) that has the label 7 as a 7-node.
A node with the label s or S is also referred to as a spiral node. If R’ is a subregion, then
we denote by 7(R’) the top-level partitioning operation of R’. The set of walls created
by ' = n(R’) is called the primary walls of R’ and is denoted by w,(7’) or w,(R'). We
write wy(R') for the set of all internal walls of R'; w;(R') D wy(R'). For an h-partition
«’ each wall in wp (') is an h-wall, and for a v-partition 7’ each wall in w,(7’) is a v-wall.
If 7’ is a spiral partition, then w, (") consists of two h-walls and two v-walls.

2.1. The partial order “<”. 'We now define a partial ordering “<” among the walls
and basic regions of an arbitrary T-plan D. The partial order “<” captures the spatial
(left-to-right and north-to-south) relationships among the walls and the basic regions.
It is important in the determination of the left-to-right ordering of the children of the
nodes in ¢(D).

If w = (L1, Lp) is an arbitrary wall, r; € Ly, and r; € Lo, thenweletr; < w < rj.
For an h-wall w the ordering r; < w < r; represents the vertical spatial relationships,
and for a v-wall the ordering r; < w < r; represents the horizontal spatial relationships.
In general, we write zp < xi, where each of o and xj is a wall or a basic region, if there is
an alternating sequence (zo, z1, - - - , £k) Of basic regions and walls such that z¢ < z;, <
---z. In Fig. 1(a) we have the following ordering relationships among the walls and
basic regions on the south side of the wall w:

Wo <71 <wWg <74 <wWig <75 < W4
Similarly, among the walls and basic regions on the east side of the wall w, we have
w <1 <ws <ry<wy<rg < ws.

Note that we get the same ordering “w; < we” by following the south side of w; and by
following the north side of ws. Figure 3(c) shows the partial order “<” resulting from
the left-spiral operation in Fig. 3(a), where an arc (z;, ;) corresponds to the ordering
z; < z; such that there is no x with the property z; < zx < x;. It is easy to see that
“<” defines a proper partial order.

The algorithm in [7] does not make full use of the partial order “<”. Instead, it
uses two subpartial orders of “<”, namely, I(r;,7;) =“r; left of r;” and a(r;,r;) =“r;
above r;”, both of which were originally defined in [2]. The relation I(r;, ;) arises as the
special case of the relation “<” for which each of the walls z2;1,7 > 0, in the sequence
(riyx1,- -+, Tk—1,7;) is a v-wall, and, similarly, a(r;,r;) arises as the special case of the
relation “<” for which each of the walls ;1 is an h-wall.

2.2. The wall digraph G,,(D). We now define the domination relationship among
the walls and basic regions in a T-plan D. In general, the domination relationship is not
a partial order. The main use of the domination relationship is in the determination of
the hierarchical structure of the subregions in D, i.e., the parent—child relationships in
t(D).

2The above definition of t(D) easily generalizes to an arbitrary dissection D that is generated by a family of
partitioning operations II provided these partitioning operations are independent of each other in the sense
that if o € II, then for no subset I’ C IT — {o} a dissection generated by applications of I’ equals the
dissection obtained by a single application of o.

84 SUKHAMAY KUNDU

Ws " Ta
ra rl
T3 ry
r2 wq wy rs
rs

The left-spiral partition. The right-spiral partition.

(@) ()

(©
F1G. 3. Wall graphs G, for (a) left-spiral and (b) right-spiral showing only some of the arcs to the region
vertices with the exception of r3; (¢) acyclic graph of the partial order “<” for the left-spiral partition.

We say that a wall w; dominates another wall wy if they form a T-junction with wo
forming the leg of the T. Put another way, if w; = (L11,L12) and we = (Le1, La2),
then w; dominates w if and only if the first members of both Ly, and Lo belong to
the second region lists L1 of w; or the last members of both Lg; and Ls2 belong to the
first region lists Ly of w;. If wy is an h-wall and wy is a v-wall, then in the first case
we say that w; dominates wy from above or north and in the second case we say that w,
dominates w, from below or south (see Figs. 4(a) and (b)). Similarly, if w; is a v-wall
and wy, is an h-wall, then in the first case we say that w; dominates ws from left or west
and in the second case we say that w; dominates w, from right or east (see Figs. 4(c) and
(d)). We extend the notion of domination to that between a wall and a basic region by

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 85

saying that the wall w = (L1, L) dominates a basic region r; if r; € Ly or L, i.e., if w
is a boundary wall of r;. If w is an h-wall, then in the first case we say that w dominates
r; from below or south and in the second case we say that w dominates r; from above
or north. The notion of domination of r; from left or west (respectively right or east) by
a v-wall is defined similarly. In Fig. 1(a) the basic region r1¢ is dominated by w;; from
above, by w3 from below, by we from left, and by w,4 from right.

© (d)

FIG. 4. The four types of domination relationships between an h-wall and a v-wall: (a) the h-wall wy domi-
nates the v-wall wa from above, (b) the h-wall wi dominates the v-wall w2 from below, (c) the v-wall w1 dominates
the h-wall wa from the left, and (d) the v-wall w1 dominates the h-wall w2 from the right.

We represent the domination relationships in a T-plan D as a digraph G,, (D), called
the wall digraph of D. The digraph G,,(D) contains one node for each wall and basic re-
gion of D, and (w;, w;) or (w;,r;) is an arc of G,, (D) if w; dominates w; or w; dominates
r;. We label each arc (w;,w;) and (w;, ;) by one of the symbols {N, S, W, E} to indi-
cate the direction of domination by w;. These labels are used primarily for analyzing the
spiral partitions, and therefore we often show these labels only for the arcs that join two
primary walls of a spiral partition. (We show in Lemma 2 in §3 that these are the only
walls that belong to cycles in G,,(D).) A vertex in G,,(D) that corresponds to a wall is
called awall vertex, and a vertex that corresponds to a basic region is called a region vertex.
The wall vertices w; and ws in G, (D), corresponding to the external north and south
walls, have no incoming arcs and are the only source nodes in G,,(D). All other wall
vertices in G, (D), including wy and w4, which correspond to the external west and east
walls, have exactly two incoming arcs. Each region vertex r; in G,,(D) has, on the other
hand, four incoming arcs and no outgoing arcs. Figure 5 shows the digraph G, (D) for
the T-plan in Fig. 1(a), where we have shown only some of the arcs to the region vertices
r;, with the exception of r; and 719 to keep the diagram simple. The wall digraphs for
the two spiral partitions are shown in Figs. 3(a) and (b); once again, we show only some
of the arcs to the region vertices, with the exception of the central region r3. Note that
the labels of the arcs along the cycle are (N, W, S, E) for the left spiral and (N, E, S, W)

86 SUKHAMAY KUNDU

for the right spiral. We use this difference to distinguish a left spiral from a right spiral.
If D has n basic regions, then the number of internal walls in D is n — 1 and hence the
digraph G,,(D) has 4+ (n—1) + n = 2n+ 3 nodes and 4 + 2(n — 1) + 4n = 6n + 2 arcs.
If z and y are two nodes in G, (D), we say that y is reachable from z if y = x or there is
a (directed) path from z to y.

FI1G. 5. The wall graph G.,(D) of the dissection in Fig. 1(a); to keep the diagram simple, only some of the
arcs to the region vertices r;, except for r1 and r10, are shown here.

If a dissection D is not a T'.-plan, then the digraph G, (D) may contain cycles with an
arbitrarily large number of nodes in it; some examples of such T"-plans are given in Fig. 10
and in [4]. It is easy to see that if D is an acyclic T-plan and (w;, w;) is an arc in G, (D),
then there is a unique subregion R’ of R such that w; is a boundary wall of R’ and w; €
wp(R'); we write R’ = p(w;, w;). In Fig. 1(a) we have p(we,wy) = {rs,rs,-*-,710},
the subregion consisting of the basic regions r4, 75, - - -, and r19; p(w1, w12) = {ra,r5}.
For the cyclic T,-plans in Figs. 3(a) and (b), there is no such R’ corresponding to the arc
(wSa ’U)5)-

If w is an h-wall, then let

6n(w) = {z : z is a v-wall or a basic region dominated by w from north},
and
6s(w) = {z : z is a v-wall or a basic region dominated by w from south}.

For a v-wall w the sets §y (w) and é§g(w) are defined similarly. We regard each of the
sets 8 (w), 6s(w), bw (w), and g (w) as linearly ordered according to “<” and refer to
them as lists. The items in each list alternate between a wall and a basic region. For an
h-wall w the set of nodes adjacent from the node w is given by adj{w] = {z : (w,z) is
an arc in Gy (D)} = és(w) U 6n(w), which is a disjoint union. We thus write adj[w] =

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 87

(6s(w),n(w)). Similarly, for a v-wall w we have adj[w] = (6g(w), bw (w)). For each
basic region r, adj[r;] = @ by the definition of G, (D). Figure 6(a) shows the adjacency
lists adj[w] for the T-plan in Fig. 1(a). We use the notation adjjw] = (61(w), 62(w)),
where 6; (w) = és(w) or §g(w) and 62(w) = én(w) or §w (w), when we do not wish to
emphasize whether w is an h-wall or a v-wall. The number of arcs that are incident to a
node z in G,,(D) is denoted by indeg|z].

adj[’“’l] = (®’ (w27 T1,We6,T4, 'LU12,7‘5,'LU4)) adj[w7] = ((1‘2), ("'3))

adjwz] = (@, (r1, ws, T2, wr,73)) adj[ws] = ((r7), (rg, w13,79))

adj[ws] = ((w2, 73, ws, 10, W1), D) adj[we) = ((r4,w12,75), (76, w10, 77, W8, T8))
adjlwg] = {(r5, w9, 78, w13,79,W11,710), D) adj[wio] = {(re), (r7))

adjws] = ((r1), (r2)) adj[wi1] = ((ré, wi0,77,ws,T9), (T10))

adj[we] = ((r1, ws,T2,w7,73), (T4, w9, 76, w11,710)) adjlwiz] = {(ra), (r5))
adj[wi3] = ((rs), (re))

(a)
The list L for the node-groups formed
The wall w | after processing 61(w) | after processing 62(w)
processed = §g(w) or §g(w) = é6n(w) or by (w)
we (ws,wr) (wg,w11)
ws ™ L = empty
wry (r2) (r3)
wg (w12) L = empty
w11 (w10, ws) (r10)
w12 (ra) (rs)
wig (re) L = empty
wg (r7) (w13)
w13 (rs) (ro)
(b)

FIG. 6. Illustration of Algorithm 1 for the T-plan in Fig. 1(a): (a) adjacency lists adj[w) for the wall vertices in
the digraph G, (D) for the T-plan in Fig. 1(a); (b) formation of successive node groups by Algorithm 1. The walls
in (b) are processed in the order shown in the first column; the root node corresponds to the node group L = (ws).

If G is an acyclic digraph, then the transitive reduction of G is the (unique) minimal
digraph G’ C G such that G’ and G have the same nodes and there is a path from a node
z to anode y in G if and only if there is a path from z to y in G'. If G contains cycles, then
there may be more than one distinct minimal subdigraph G’ as defined above. However,
if no two cycles in G have a node in common, then G’ is unique.

The fundamental observation behind the algorithm presented here is that if the top-
level partition w(R') of a subregion R’ is an h or v partition, then the source nodes in the
subdigraph G;(R’) C G,(D) on the internal walls and basic regions in R’ (excluding
the vertices for the boundary walls of R’) consist of the primary walls w,(R') created
by the top-level partition operation w(R’) in R'. The situation is slightly more complex
if w(R’) is a spiral partition. In this case we do not have any source nodes in the sub-
digraph G;(R’). Instead, we have a “source cycle” formed by the set of walls w,(R")
such that the only arc (w;,w;) in G1(R') to a wall w; € wp(R') is from another wall
w; € wp(R'). Fortunately, the source cycles in the various G;(R') are precisely the cy-
cles in G, (D); moreover, they are easily identified because they are disjoint from each
other (see Lemma 2, §3). Identifying the subsets of nodes of the form w,(R’) without
constructing the subregions R’ themselves is also possible by exploiting certain special
properties of the wall digraph G,, (D) that are described in §3.

88 SUKHAMAY KUNDU

3. Properties of wall digraph G,, (D). The following lemmas summarize some of
the important properties of the digraph G,,(D) for a T,-plan D. These properties form
the basis of the algorithms given in §§4 and 5 for the construction of ¢(D).

LEMMA 1. If w; is a boundary wall of a subregion R, then there is a path from w; to
each internal wall w; of R'. Also, if w; is an internal wall of R', then the paths from w; to
other vertices in G, (D) are limited to only the internal walls and basic regions of R'.

Proof. The second part of the lemma is immediate from the fact that for any arc
(w;, wg) from an internal wall w; € wr(R'), wy, is necessarily an internal wall of R’ and,
in particular, wy, is not a boundary wall of R’. If (w;, 7;) is an arc from the internal wall
w; of R', then r; is necessarily a basic region of R'.

We prove the first part of the lemma by induction on the number of partition op-
erations m > 1 applied to R'. If w; is one of the primary walls in w,(R’) created by
the top-level partition operation w(R’) of R’ and 7(R') = h or v, then either (w;, w;)
is an arc in G,,(D) or there is another boundary wall wy, of R’ such that (w;, wy) and
(wk,w;) € Gyw(D). The latter occurs, for example, if R’ is created by an h (respectively,
v) partition and 7(R’) = v (respectively, h). On the other hand, if 7(R') = s or S,
then there is a path of length < 4 from w; to each primary wall w; € w,(R’). Thus the
lemma is true for m = 1. Now suppose that the lemma is true for subregions having
fewer than m > 2 partition operations, and suppose that R’ has m partition operations.
If w; € wy(R') —wp(R'), then one of the subregions R” C R’ created by w(R’) contains
w; as an internal wall. Let w’ € w,(R’) be a boundary wall of R”. Then w’ is reachable
from w; (by the case m = 1), and w; is reachable from w’ by the induction hypothesis.
Hence there is a path from w; to w;. 0

COROLLARY 1. The digraph G.,(D) is connected as an undirected graph.

Proof. Each vertex in G,, (D) is reachable by an undirected path from the node w;,
say. a

LEMMA 2. If D is an acyclic T,-plan, then G,,(D) is an acyclic graph. If D is not
acyclic, then each cycle of G.,(D) corresponds to the set of primary walls wy,(R’) for some
subregion R', where n(R') = s or S, and the converse is also true. No two-cycles in G,,(D)
have a node in common.

Proof. Clearly, any cycle of G,, (D) involves only the wall vertices. In view of Lemma
1, if G,,(D) contains a cycle that involves w; and if w; is a boundary wall of a subregion
R/, the cycle must not involve any internal wall of R'. Thus the only way that a cycle may
be formed is by the boundary walls of the subregions created by a single partition, i.e.,
the set of primary walls w,(R’) for some (R'), where 7(R’) = s or S. The converse and
disjointness of the cycles are now immediate. a

LEMMA 3. Let D be an acyclic T,-plan. If the wall w; dominates the walls w; and wy,
from two different directions (i.e., below and above or left and right), then there is no wall
w’ such that there is a path from w; to w' through w; and a path from w; to w' through wy.

Proof. Let Ry = p(w;,w;) and Ry = p(w;, wg). The subregions R, and R; lie on two
different sides of the wall w;. Since wj is an internal wall of Ry, it follows from Lemma 1
that a path leading from the arc (w;, w;) cannot reach any wall that is not internal to R;.
A similar property holds for the paths leading from the arc (w;, wy) and the subregion
R,. This proves the lemma. 0

Lemma 3 may not be true, in general, for T,-plans containing spiral partitions. For
instance, in Fig. 7(a) the wall w4 dominates the walls w;7 and w;g from two different
directions, but p = (w14, w17, w10) is @ path from w4 to wsg via the arc (w4, w17) and
p = (w14, w19, W18, Wy, We, W17, ’wlo) is a path from w4 to wyg via the arc (w14, ’wlg).

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 89

Wao Wi Wie
w1
Wy
wq
Wio
Wi3
Wa Wy
Wis Wi9
wi
w1
Ws
We Wia
W3
w2 Wig Wa
(@

(b)

FI1G. 7. (a) A Tx-plan D with nested spiral partitions and its wall digraph G, (D); (b) a part of the digraph
Gw(D) for the Tx-plan D in (a); only the wall vertices and the arcs among them are shown.

LEMMA 4. Let D be an acyclic T,-plan. Then the arcs in the transitive reduction of
G (D) are given by the following:

1) (w1, w2), (w1, ws), (w3, w2), and (w3, wa);

2) (wi,wj) € Gy(D), where w; is a boundary h-wall of a subregion R' such that
m(R') = vand w; € wy(R);

(3) (wi,wj) € Gy(D), where w; is a boundary v-wall of a subregion R’ such that
w(R') = hand w; € wy(R');

(4) (wi,rj), where w; = (Ll,Lz) and L1 = (rj) or L2 = (’I‘j).

Proof. Let G'(D) denotes the transitive reduction of G,,(D). That the arcs in group
(1) are the only arcs to wy and w, in G'(D) is easily verified. Now assume that w; is an

90 SUKHAMAY KUNDU

h-wall and w; € w,(R’) as in (2). We need to show that there is no other path from w;
to w;. If possible, let p = (w;, wg, - -+, w;) be a path from w; to w;. By Lemma 3 wy
must be on the same side of w; as w;, and by Lemma 1 wj must be internal to R'. If
wy, & wp(R'), then wy, is an internal wall of a subregion R” C R’ created by the partition
operation 7(R’), and thus the path p cannot reach w;, which is not internal to R”. Thus
wy, € wp(R'). However, this means that the path p enters a subregion R” C R’ following
the arc (w;, wy) and that w; is not an internal wall of R”. Once again, the path p cannot
continue to w;. Thus no path p = (w;, wg, - - -, w;) exists, and hence (w;, w;) € G'(D).
The proof for group (3) is similar. On the other hand, if (w;, w;) € Gw(D),w; € wp(R'),
and w; # ws or wy, then there is a subregion R” C R’ such that wj is an internal wall
of R” and by Lemma 1 there is a wall wy € w,(R') and a path from w; to w; via the arc
(ws, w). This shows that the only arcs (w;, w;) in G'(D) are those in groups (1)—(3).

Finally, consider the arc (w;,r;), where Ly = (r;) or Ly = (r;). Let (w;,wy) €
G (D). Then r; and wy are on two different sides of the wall w;. If we write p(w;, wi) =
R”,then a path leading from the arc (w;, wx) cannot reach any basic region that is outside
R" and hence cannot reach r;. This shows that (w;,r;) € G'(D). On the other hand,
if r; € Ly and Ly # (r;), then there is a wall w; such that both the arcs (w;, w;) and
(wj,r;) belong to G, (D) and hence (w;, ;) ¢ G'(D). Similar reasoning applies for the
case r; € Lo and Lo # (r;). 0

4. Construction of ¢(D) for an acyclic T,-plan. The following theorem shows the
relationship between ¢(D) and G,,(D) for an acyclic T,-plan D and forms the basis of
Algorithm 1 for the construction of ¢(D) from the wall representation w(D).

THEOREM 1. Let D be an arbitrary acyclic T,-plan, and let Gi(D) = G, (D) —
{wy, wa, ws, wy} be a subdigraph that shows the domination relationships among the inter-
nal walls and basic regions of D. Then the subregion tree t(D) is isomorphic as an unordered
tree to the digraph obtained from the transitive reduction of G1(D) by merging each node
group of primary walls wy(R'), where R’ is a subregion, into a single node.

Proof. If D consists of a single basic region, then there is nothing to prove. Suppose
that D has two or more basic regions. It is easy to see that the source nodes of G (D) are
the same as the set of primary walls w,(R) = {wj,,wj,, - -, wj,_, }, say, that are created
by the top-level partition operation m(R) corresponding to the root node of ¢(D). By
Lemma 1 it follows that the removal of nodes w,(R) from G;(D) decomposes G1(D)
into k disconnected components (as an undirected graph), one for each of the subre-
gions { Ry, Ry, - - -, Ry, } created by w(R). (The wall w;, may be regarded as the common
boundary wall between R; and R;1.) The connected component of G (D) correspond-
ing to the subregion R; equals G;(R;),1 < j < k. The theorem now follows by a simple
induction argument applied to each R;. a

Figure 8(a) shows the transitive reduction of the wall digraph G,,(D) for the T-
plan in Fig. 1(a); a part of G,, (D) was shown earlier in Fig. 5. Each node group of the
form wy(R’) is shown here enclosed in a rectangular box. The node groups w(R') are
easily identified successively as follows. Initially, the external walls {w;, w3} form the
source nodes of G, (D). The nodes {w1, ws} may be thought of as the primary walls
of a hypothetical h-partition of the whole infinite plane (without any boundary lines)
creating the three subregions N, S, and the area R = RU W U E between the walls w;
and ws. The removal of {w1, w3} from G,,(D) (see Fig. 5) gives rise to the source nodes
{ws, wg, ws}, which consist of the external wall {w2, w4} and the node group we(R) =
{we}. Here the walls {w2, w4, we } may be thought of as the primary walls of an extended
v-partition of R* corresponding to w(R) = v. If 7(R) were an h-partition, then {ws, w4 }
would be the only source nodes in G,, (D) — {w1, w3} and the source nodes in G;(D) =

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 91

Guw(D) — {w1, w2, w3, ws} would equal the set of primary walls w,(R). Each successive
node group is obtained by removing the current node group and taking the source nodes
of a connected component of the resulting digraph.® Figure 8(b), save the labels h and v
for the nonterminal nodes, shows the tree obtained by merging each node group in the
transitive reduction of G;(D) into a distinct single node. This tree is isomorphic to the
tree ¢(D) in Fig. 1(c) as an unordered tree.

NN
T~
E} VAN

2)

4 o8 & [n

we) | v

(ws,w7) | h (wo,wy1) | h

Q @ Q v | (W) v | (Wio Ws) @

Q. (r5) (r) ()|) | b

F1G. 8. (a) The transitive reduction of G, (D) for the T-plan in Fig. 1(a); each node group consists of the
primary walls wy,(R') for some subregion R’ . (b) The result of merging each node group wy(R') into a single node
after deleting the nodes {w1, w2, ws, w4} in the transitive reduction. The tree is identical to the tree in Fig. 1(c)
except for the h and v labels of the nonterminal nodes.

3The method of forming the successive node groups in this way may be likened to the topological sorting
algorithm in [1]. It essentially amounts to computing the transitive reduction of G (D) because of the special
structure of G (D).

92 SUKHAMAY KUNDU

To complete the construction of the tree ¢(D), we now show how to determine the
ordering of the children of each node in ¢(D) by using the ordering “<” together with
the digraph G, (D). We argue below the case for the root node only; the same argument
holds for all other nodes of t(D) as well. Let {R;, Rz, - -, Rx} be the subregions cre-
ated by w(R), in the left-to-right or top-to-bottom order, according to whether 7(R) = v
or h. If wj, is the wall between subregions R; and R; 1, then wj;, < wj, < -+ wj,_,
and wp(R) = {wj,,wj,, -, wj,_, }. If we disconnect the node w;, from each node in
61(wj,) C adj|wj,], then in view of Lemmas 1 and 3 we have that G;(R;) becomes iso-
lated as one connected component and the second component consists of the union of
wp(R) and G1(R;),2 < i < k. The component G;(R;) is identified as the one that does
not contain w;,. We now complete the deletion of w;, from G;(R) by disconnecting
wj, from the remaining nodes 62 (wj,) in adj[w;,] and by removing w;, . This, however,
causes no further decomposition of the second component into two or more compo-
nents if k > 2. The process now continues by first disconnecting w;, from the nodes
in §;(wj,) and isolating the component G(R2) as the one that does not contain wj,.
The deletion of w;, is then completed by disconnecting it from the nodes in §2(w;,) and
removing w;, and so on. The last component remaining after the removal of w;, _, is the
component G;(Ry). This completes the determination of the ordering of the children
of the root node, which correspond to the subregions R;,1 < ¢ < k. In Algorithm 1
below, we determine only the source nodes in the various components R; in the order
i=1,2,--., kinstead of determining the whole components R;. This helps to minimize
the computation and keep the overall computation at the level O(n).

Algorithm 1 constructs the subregion tree ¢(D) for an acyclic T.-plan D in a top-
down, breadth-first fashion by successively identifying the various node groups of the
form wy,(R’) as described above. It assumes that the linear ordering “<” of each of the
lists 6, (w;) and é2(w;) has already been determined. It is from these orderings that we
directly obtain the ordering w;, < wj, < --- < wj,_, of the primary walls w,(R’) in each
node group, without having to order the set wy,(R') = {wj,,wj,, -, wj,_, } separately
for each R’ after the determination of w,(R’). The advantage of using the orderings of
61(wj) and é2(w,) is that they can be determined for all walls w; by using only O(n) time
(see §6). Algorithm 1 uses a queue @ to hold the source-node groups that have been
identified but that have not been deleted yet from G,, (D). In terms of the tree ¢(D),
these node groups correspond to the nodes whose children are yet to be determined.
(The use of a stack instead of a queue results in constructing the tree ¢(D) in the depth-
first fashion.) Each item in Q is a pair (p(z), L(z)), where p(z) is a pointer to the node z
int(D) and L(z) = the node group at z in the order “<”. The list L(z) consists of either
a basic region or the set of primary walls wj, (R’) for some subregion R’. The pointer p(z)
is used for connecting the children of z to the node z. When an arc (w;, w;) is deleted
from G,,(D), we label w; as an h-wall or a v-wall according to whether w; is a v-wall
or an h-wall. Initially, the external north and south walls (w; and w3) are labeled as
h-walls. The h—v labels are maintained in an array label[w;]. A node in ¢(D) is labeled
h or v according to whether the walls in that node group are h-walls or v-walls.

4To see this, one may argue as follows. If Ry is a basic region, then it is adjacent from both w;, and wj,.
On the other hand, if R3 is not a basic region, then the primary walls wp(th) of Ry are adjacent from both
wj, and wj, and all basic regions and internal walls in Ry can be reached from w;, via the primary walls

wp(R2).

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 93

ALGORITHM 1
Construction of t(D) from w(D) of an acyclic T.-plan D.

Input: The set of walls w(D) of an acyclic T,-plan D.

Output: The subregion tree ¢(D) of D.

1. If there are only four walls in w(D), then D consists of a single basic region r;
and t(D) consists of a single node r;. Otherwise, for each wall w determine the
adjacency lists in the form adj[w] = (61(w), 82(w)), including the ordering “<”
in each of the lists 6; (w) and 62(w). Let indeg[w;] = 2 for each wall w; except
for indeg[w;] = 0 = indeg[ws], and let indeg[r;] = 4 for each basic region r;.
(Here w, is the external north wall and wj is the external south wall.)

2. Let wo and wy be the external west and east walls, respectively.

3. Remove w; and w3 from G, (D), and adjust indeg[z] appropriately for each
vertex ¢ that is adjacent from one or both of w; and ws.

4. (Determine the label of the root node of ¢(D).) Let Ly = the list of the source
nodes other than ws and wy, if any. Remove the nodes wy and wy, and adjust
indeg[z] for all vertices that are adjacent to one or both of w, and wy. Perform
step (a) or (b) as appropriate.

(a) If Ly # @, then the label of the root node of ¢(D) is v. In this case Ly C
62(w1); assume that Ly is ordered according to é2(w;).

(b) If Ly = @, then the label of the root node of ¢(D) is h; let Ly = the set of
new source nodes after removal of w; and wy. In this case Ly C 8z(ws);
assume that L is ordered according to 62 (w2).

5. Create the root node z of ¢(D) with the associated node group L(z) = L.
Initialize the queue @ with the item (p(z), L(z)), where p(z) is a pointer to the
node z.

6. While @ is nonempty do (a) and (b):

(a) Remove the first item (p(z), L(z)) from Q.

(b) Process each wall w € L(z) according to the order “<” in L(z) as follows,
where adjjw] = (61(w), §2(w)).

(i) For each z € 6; (w) reduce indeg[z] by one. Let L C §;(w) be the list
of new source vertices in the order as in §; (w).
(ii) If L # @, then create anew node 2’ in the tree ¢(D) with the associated
node group L(2') = L; make 2’ the current rightmost child of the node
z using the pointer p(z). If L is not a single basic region, then add the
item (p(2’), L(2’)) to the end of @ and let label[2’] be the same as the
labels of the nodes in L (all nodes in L have the same label, v or k).
(iii) Repeat steps (i) and (ii) using 62(w) in place of §; (w). (In this case L
is empty except when w is the last item in L(2); in processing 6; (w), L
is always nonempty.)
Fig. 6(b) illustrates Algorithm 1 and shows the various node groups L formed for
the set of walls in Fig. 1(b). The final tree obtained by the algorithm is the same as that
in Fig. 1(c).

5. Construction of ¢(D) for an arbitrary T,-plan. Suppose now that the T,-plan D
contains one or more spiral partitions. As we noted in §2, if the partition operation
m(R’) = s or S, then the digraph G;(R') C G, (D) on the internal walls and basic
regions of R’ does not contain a source node because the primary walls w,(R’) form a
cycle C. By Lemma 1, cycle C has the distinguishing property that no internal wall in

94 SUKHAMAY KUNDU

wr(R') dominates a wall in C.. In this sense we may say that cycle C'is a “source cycle” in
G1(R’). We determine all cycles in G,, (D) by a single depth-first traversal [1] of G,,(D)
starting at the external north wall w,, say. Since the region vertices have no outgoing
arcs, it suffices to traverse only the arcs to wall vertices. Also, because the cycles are
disjoint (Lemma 2), each cycle is formed by a back arc (w;,w;) and the path from w;
to w; in the depth-first tree. We assume that the arcs (w;, w;) from a wall vertex w; are
processed in the depth-first search first for w; € 6;(w;) and then for w; € 82(w;), in
both cases following the ordering “<” in the lists 6; (w;) and 8(w;). Figure 9(a) shows
the depth-first tree for the wall digraph of the T.-plan D in Fig. 7(a) which contains
three spiral partitions, three h-partitions, and two v-partitions. Here, one of the spiral
partitions is nested inside another one and the third spiral partition is disjoint from the
first two. The three cycles corresponding to the spiral partitions are given by

C1 = (w19, w1s, ws, w14), a right spiral,
C2 = (wr,we, w17, w12), @ left spiral,

Cs = (w13, w10, w11, Ws), aright spiral.

The following theorem (similar to Theorem 1) is now easily proved by using the
lemmas in §2 and is stated here without proof. Note that the special properties of G, (D),
including the disjointness of its cycles, imply that the transitive reduction of G;(D) =
Gy (D) — {wy, wa, w3, ws} is uniquely defined.

THEOREM 2. Let D be an arbitrary T,-plan acyclic or not. Then the subregion tree t(D)
is isomorphic as an unordered tree to the digraph obtained from the transitive reduction of
G1(D) = Gy(D) — {w1,ws, ws,ws} by merging each node group w,(R'), where R' is a
subregion, into a single node.

We are now ready to present Algorithm 2 for constructing the tree ¢(D) from w(D)
for a general T.-plan D that may contain one or more spiral partitions. We regard a
cycle C; as a composite vertex consisting of the vertices w; € C;. For each cycle C; we
define indeg[C;] = 4, which is simply the number of arcs from nodes not in C; to the
nodes in C;. We augment the array indeg|[z] for the wall and region vertices z in G, (D)
by adding an entry indeg[C;] for each cycle C; in G, (D). When an arc (w;, w), w; € C;
and wy, € Cj, is deleted from G, (D), we reduce indeg[C;] by one; we say the cycle C; is
adjacent from w;. The test wy, € C; is performed by using an additional array cycle[wy],
which gives for each wall vertex wy, the unique cycle in G, (D) containing wy, if any (if wy,
does not belong to any cycle, then we let cycle[wy]| = nil). We assume that each cycle C;
is written in the standardized form, which is defined to be C; = (wq, ws, w, wq), Where
the vertices are listed in the cyclic order and the wall vertex w, dominates wj, from north.
We define label(C;) = s or S according to whether the labels of the arcs along the cycle
are (N,W, S, E) or (N, E,S,W). As in Algorithm 1, on processing an arc (w;, w;) we
identify the wall w; as an h-wall or a v-wall according to whether w; is a v-wall or an
h-wall.

The main difference between Algorithm 1 and Algorithm 2 lies in the processing of
the vertices in a source cycle C. The processing of C [i.e., the deletion of the nodes in C
from G,,(D)] generates five separate node lists Ly, 1 < k < 5, corresponding to the five
regions formed by the associated spiral partition. If z is a cycle, then the test “z < w;”
in steps 6(c)(i) and (ii) is considered to be true if a vertex w; belonging to the cycle =
satisfies w; < w; (in which case w; < w; holds for all vertices wj; in the cycle).

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 95

s Ci= (w5, Wis, Ws, Wi4)
RN
w2 |y v Wie
A
wy |h s Ca2=(Wg We Wiz, Wi2)
] C3= (W13, W10, W11, W)
AN
Wy h h| wis

® (©

F1G. 9. Illustration of Algorithm 2 for the Ti-plan in Fig. 7(a): (a) Depth-first traversal of the wall vertices
of G (D) shown in Fig. 71(b) with the back arcs shown in broken lines and vertex w3 not visited; (b) node groups
L constructed by Algorithm 2 corresponding to the nonterminal nodes of t(D) and the arcs among them in the
transitive reduction; (c) nonterminal nodes in the tree t(D).

96

SUKHAMAY KUNDU

ALGORITHM 2

Determination of t(D) from w(D) for an arbitrary T,-plan D.

Input: The set of walls w(D) of an arbitrary T.-plan D, which may contain

spiral partitions.

Output: The subregion tree t(D) of D.

1.

If there are only four walls in w(D), then ¢(D) consists of a single node r; = D.
Otherwise, for each wall w determine the adjacency lists in the form adjjw] =
(61 (w), 82(w)), including the ordering “<” in each of the lists §; (w) and é2(w).
Let indeg[w;] = 2 for each wall w; except for indeg[w,;] = 0 = indeg[ws], and
let indeg(r;] = 4 for each basic region r;.

. Let w, wq, w3, and w4 be the external north, west, south, and east walls, respec-

tively. Determine the cycles C in G,,(D) by a depth-first traversal starting from
the node w;. Let indeg[C] = 4 for each cycle, and compute the array cycle[w;]
by scanning each cycle C once.

. Remove w; and w3 from G,,(D), and adjust indeg|[z] for all vertices and cycles

z that are adjacent from one or both of w; and ws.

. (Determine the label of the root node of t(D).) Let Ly = the list of the source

nodes other than wy and wy, if any. Remove the nodes wy and wy, and ad-
just indeg|z] for all vertices and cycles z. Perform one of the steps (a)—(c) as
appropriate.

(a) If Ly # @, then the label of the root node of t(D) is v. In this case Lo C
62(w); assume that Ly is ordered according to 82 (w1).

(b) If Ly = @ and there is a wall w; that is a source node (after removal of w.
and w,), then the label of the root node of ¢(D) is h; let Ly = the set of
source nodes after removal of we and wy. In this case Lo C 62(w2); assume
that Ly is ordered according to 82 (w2).

(c) Otherwise, there is a unique source cycle C = (wj, , wj,, wj,, wj,), in the
standard notation, with indeg[C] = 0. Let L, = C, and let the label of the
root node of t(D) be label(C).

Create the root node 2z of ¢(D) with the associated node group L(z) = Lo.
Initialize the queue @ with the item (p(z), L(z)), where p(z) is a pointer to the
node z.

. While @ is nonempty do (a) and (b) or (a) and (c) as appropriate:

(a) Remove the first item (p(z), L(z)) from Q.

(b) If L(z) is not the vertices of a cycle or, equivalently, if it contains only h-
walls or only v-walls, then process each wall w € L(z) according to the
order “<” by (i)—(iii), where adj{w] = (61 (w), 62(w)).

(i) For each z € 6;(w) reduce indeg[z] by one and reduce indeg[C] by
one, where C = cycle[z], if any. Let L be the new source cycle, if any,
or let L C 6;(w) be the list of new source vertices in the order as in
61 (w).

(ii) If L # Q, then create a new node 2z’ in the tree with the associated
node group L(z') = L; make 2’ the current rightmost child of the
node 2z using the pointer p(z). If L is not a basic region, then add the
item (p(2'), L(2")) to the end of @ and let label[2’] = label(L) if L
consists of a cycle; otherwise, let label[2’] be the same as the labels of
the nodes in L (all nodes in L have the same label, h or v).

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 97

(iii) Repeat steps (i)—(ii) using é2(w) in place of 8z(w). (In this case L is
empty except when w is the last item in L(z); in processing §; (w), L is
always nonempty.)

(c) If L(z) = (wj,, wj,, wj,, wj,) is a cycle, then process the lists 6; (w;,), and
62(wj;),1 < 4 < 4, in the order “<” as shown in the table below. The
processing of 8; (wj,) or 62(w;,) means that for each z in that list, indeg|z]
and indeg[C], where C' = cycle[z] # nil, are reduced by one. Moreover,
if the indegree of a node or a cycle becomes zero after it is reduced by
one, then that node or the nodes of that cycle are added to one of the lists
Ly,1 < k < 5. This is indicated in the table by “c — L;”. The lists
Ly, are initially assumed to be empty. The final result of this step are the
five lists Ly, 1 < k < 5. (See Fig. 3(a) with the walls ws, ws, wr, and wg
regarded as wj,, w;,, wj,, and wj,, respectively.) Now, create five child
nodes zx,1 < k < 5, of the node z in the tree in that order, with the
associated node groups L(zx) = Li. For each L(z) that is not a basic
region add to Q the item (p(zx), L(2x)), where p(2) is a pointer to the

node zj.
(i) The case label[z] = s (ii) The case label[z] = S

61(wj): oI b1(wjy): =z — Ly

b2(wj,): if £ < wj, thenx — La b2(wj,): if x < wj, thenx — L3
else x — L3 else ¢ — Ls

61 (wj2): T — Lo 61 (’U)jz): if £ < wj; then z — L3

b2(wj,): if x < wj; then x — L3 else z — L2
else T — L5 52 (wjz): r — L5

61(wjz): if x <wj, thenz — L3 b61(wjz) if o <wj, thenz — Ly
else — L4 else t — L3

b2(wjz): «— Ls b2(wjz): = — L2

61(wjy): if x <wj, thenz — Ly 61(wjy): T— Iy
else x — L3 b2(wj,): if z < wj, thenx — Ly

b2(wjy): x— Ly else x — L3

Figures 9(b) and (c) show the results of applying Algorithm 2 to the set of walls for
the T.-plan in Fig. 7(a). We show only the various node groups formed by Algorithm 2
corresponding to w,(R’') and the cycles in the wall digraph, i.e., the nonterminal nodes
of the tree t(D).

6. Complexity analysis. Let n be the number of basic regions in the T,-plan D. To
argue that the time complexity of both Algorithms 1 and 2 are O(n), it suffices to show
that for all walls w; € w(D) the lists 6, (w;) and 62(w;) together with their linear ordering
“<” can be determined in time O(n). As for the other computations, we note that the
total number of of arcs in G,,(D) is O(n) and the various processings of each arc (for the
depth-first traversal, updates to indeg|z] for the vertices and cycles z and computation
of label[w] for the walls) take at most a constant time ¢, for some c. Also, the number of
cyclesin Gy, (D) is at most n/4. This shows that the total time required by each algorithm
is O(n).

We determine the ordered lists 6; (w;) and é2(w;) for all w; in time O(n) as follows.
For each basic and external region z; let first[x;] denote the list of walls w; = (L1, Ls),
in some order, such that z; is the first member of L; or L,. We define the lists last[xz;]
similarly. Each of the lists first[z;] and last[z;] has at most four items. The lists first[z;]
and last[x;] can be constructed by a simple scan of L, and L, for eachwall w; € w(D)and
by noting the first and last items in L; and Lo. The time required for this is proportional

98 SUKHAMAY KUNDU

to the sum of lengths of all the lists L; and L, for w; € w(D), which equals 4n + 8
(8 = the number of times the external regions N, S, W, and E appear in the various L,
and L). Table 1 shows first[z;] and last[z;] for the walls in Fig. 1(b) when the walls are
processed in the order wy, we, - - -, wi3.

TABLE 1
The lists first[z] and last[z) corresponding to the walls in Fig. 1(b).

T first[z] last[z]

N | (w1) (w1)

S (ws) (ws)

w (wlvw2vw3) (wz)

E (wa) (w1, w3, wa)
r1 | (w2, ws,ws) (ws)

re | (ws,wr) (ws, wr)

r3 | (wr) (w2, we, wr)
ra | (we,wg,wi2) (wi2)

rs | (w4, wi12) (w9, w12)

re | (wg,wio,w11) (wio)

r7 | (ws,wio) (ws, w10)

rg | (ws,w13) (we, w13)

re | (w13) (ws, w11, w13)
r10 | (wi1) (w4, we, w11)

If w; = (L1, L2), then we construct the ordered list 6, (w;) by scanning L; in left-to-
right order as follows. Let L, = (x1,z2,23, -, zx) and w;, = last[z;]N last[z;1],1 <
i < k — 1. Then 61(w;) = (x1,wj,, T2, wj,, "+, Wj,_,,Tx), €Xcept that we may have
to remove one or both of z; and z, whichever equals an external region. The or-
dered list 85(wj;) is constructed similarly by using the list L, and the lists first[z;]. For
example, to compute §;(w;) for the T,-plan in Fig. 1(a), we start with the second list
Ly, = (W, ry,74,75, E) for w; in Fig. 1(b) and this gives

(W, first[W] N first[rq], rq, first[ry] N first[ry], r4, first[ry] N first[rs], 75, first[rs] N first[E], E)

= (W, wa, 1, We, T4, W12, 5, W, E)

from Table 1. By removing the external regions W and E from this list, we get 62 (w1) =
(w2, 71, We, T4, W12, 75, Wa).

THEOREM 3. The time complexity of each of Algorithms 1 and 2 is O(n), where n =
number of basic regions in the T,-plan D.

7. Generalization to arbitrary partitioning operators. The technique described in
§84 and 5 for the construction of the subregion tree ¢(D) from w(D) actually applies to
more general classes of T-plans, namely, those generated by a finite family IT of parti-
tioning operators that satisfy some natural conditions. If = € II is an arbitrary parti-
tioning operator, let D, denote the dissection obtained by a single application of 7 and
let Go(w) C G(Dm) denote the subdigraph on the internal walls of D, excluding the
region vertices. An operator 7,7 # h or v, is called primitive if D, contains no proper
subregion other than a basic region. This is the same as saying that D, cannot be ob-
tained by combining two or more applications of other partitioning operators (in II or
otherwise). The spiral partitions are examples of primitive partitioning operators. Fig-
ures 10(a) and 10(b) show two other primitive partitioning operations ¥ = the double
left spiral and €2 = the weave partition; also shown are the digraphs Go(X) and Gy ().

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 99

Ws
Wg
Wq
Wy
Wio
Wi
Wiz
We
(a)
We
Wiz Wia
Ws Wi3
w7
wg
W10
Wo
wi Wis
Wie

(b)

FiG. 10. Examples of primitive partition operations that cannot be generated by {h,v, s, S} partition
operations. The internal h-walls are labeled as wa2;—1, and the v-walls are labeled as w2;,i > 1 : (a) double-
left-spiral partitioning operation ¥ and its wall graph Go(X) on the internal walls; (b) weave-pattern partitioning
operation 2 and its wall graph Go () on the internal walls.

A digraph G is called strongly connected if there is a directed path from each ver-
tex to every other vertex in G. If G is not strongly connected, then a maximal strongly
connected subdigraph of G is called a strong component. The strong components form a
disjoint partition of the nodes of G. If we merge each strong component of G to a distinct
vertex, then the result is an acyclic digraph. A strong component of G that corresponds
to a source node in that acyclic digraph is called source component.

LEMMA 5. If m # h or v is a primitive partition operator, then the digraph Gy(r) is
strongly connected and has at least four vertices.

Proof. Let {wy, w2, ws, ws} be the external walls of the dissection D, and let C be
a source component of Go(7). We claim that the walls in C form the internal walls of
a dissection of the rectangular space R of D,. The only way that this may be false is if
there is a wall w; € C that is dominated by a wall w; € Go(n) — C. However, because
C is a source component, there cannot be any w; in Go(7) — C that dominates a wall
w; € C. Thus the walls in C define a dissection, and hence must have C = Gy ()
because otherwise one of the subregions of the dissection defined by C'is partitioned by
one or more of the remaining walls in Go(7) — C, which contradicts that is primitive.

100 SUKHAMAY KUNDU

Now if C = {wj;} consists of a single wall, then = = h or v according to whether w; is
an h-wall or a v-wall, and this is a contradiction. Finally, to show that C has at least four
vertices, we simply note that G() is a bipartite graph with each arc joining an h-wall
and a v-wall. (The number of nodes in Gy () may be odd or even. In Fig. 10(a) if we
delete the h-wall wg and extend the v-wall w;o downward to meet with the h-wall wy;,
then we get a variant &’ of the double-left spiral partition, which is primitive, and there
are seven nodes in Go(X').) o

For the techniques used in Algorithm 2 to work correctly for a general class of T-
plans, which are obtained by the partition operators II, we must assume that conditions
(1) and (2) below hold. Condition (1) is a global property of the family II as it relates
different members of II. Condition (2), on the other hand, constrains each individual
member of II separately. The family of operators IIy = {h, v, s, S} for generating the
T.-plans clearly satisfies conditions (1) and (2); the same is true for the family II' =
{h,v,s,S,%,Q}.

(1) No two digraphs in the family {Go(7) : 7 € Il and 7 # h,v} are isomorphic
as labeled digraphs (where each arc is labeled appropriately by one of the symbols in
{N,S, W, E}).

(2) There is no nontrivial isomorphism of Gy(7) to itself as a labeled digraph if
7w # horv.

Note that although both G¢(X) and Go(2) contain as a subdigraph an isomorphic
copy of Gy(s), this does not cause any problem in recognizing whether a particular oc-
currence of the subdigraph Gy (s) in a wall digraph G,, (D) is due to an s-partition or is
due to one of the partition operators X and 2. The former is the case if and only if that
subdigraph Gy (s) is a strong component of G, (D).

The main reason that Algorithm 2 can be extended to the general class of T-plans ob-
tained by partition operations I without increasing the time complexity O(n) is that one
can determine the strong components of the wall digraph G, (D) in time O(n) [1]. As for
the correctness of such an algorithm, we only need to note that Lemma 1 remains valid
for the general T-plans in view of the strong-connectedness property of Go(7) shown
in Lemma 5. This also means that Theorem 2 remains valid for the general T-plans.
The role of the source cycles in Algorithm 2 is now replaced by the more general notion
of source components. The details of the modification of step 6(c) in Algorithm 2 will
depend on the specific partitioning operators in II. For example, if 7 = the double left
spiral, then there will be nine lists L;, obtained in step 6(c).

We conclude the paper with two conjectures: (i) If 7 and #’ are two primitive par-
titioning operators other than h and v, then Go(7) and Gy(n’) are not isomorphic as
labeled digraphs. (ii) If # # h or v is a primitive partition operator, then there is no
nontrivial isomorphism from G () to itself as labeled digraph. We assume here that
two partitioning operators that have the same wall representation are not distinguished.
For example, if the h-wall w3 in Fig. 10(b) is moved slightly up or down in relation to the
h-wall ws, then we do not consider the result to be a partitioning operator different from
Q2. However, if we rotate the dissections in Fig. 10 by 90 degrees, then the corresponding
partition operators are considered to be distinct from ¥ and Q. The h-walls now corre-
spond to the original v-walls and vice versa. In particular, the wall representations of the
new T-plans can be distinguished from those of ¥ and (2 if we consider both the internal
walls and the external walls (and only then). Also, the digraphs Go(X) and Go(f2) are
distinguished from those of the new partition operators by the arc labels.

Acknowledgment. The author gratefully acknowledges the comments of the anony-
mous referees, which greatly helped in improving the presentation.

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 101

REFERENCES

[1] A.V.AHo, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Algorithms, Addison Wesley,
Reading, MA, 1974.

[2] U. FLEMMING, Wall representation of rectangular dissections and their use in automated space allocation,
Environ. Planning B, 5 (1978), pp. 215-232.

3] , On the representation and generation of loosely packed rectangles, Environ. Planning B, 13 (1986),
pp. 189-205.

[4] , Wall representations of rectangular dissections: additional results, Environ. Planning B, 7 (1980),
pp. 247-251.

[5]1 P. GALLE, An algorithm for exhaustive generation of building floor plans, Comm. ACM, 24 (1981), pp.
813-824.

[6] , Abstraction as a tool of automated floor-plan design, Environ. Planning B, 13 (1986), pp. 21-46.

[7] S. KunNDU, The equivalence of the subregion representation and the wall representation for a certain class of
rectangular dissections, Comm. ACM, 31 (1988), pp. 752-763.
[8] S.KUNDU AND R. SINGH, Spatial reasoning in rectangular dissection, in Proceedings of the Workshop on
Spatial Reasoning and Multi-Sensor Fusion, IL, 1987, pp. 82-91.
[9] S. KUNDU, A non-backtracking hierarchical placement algorithm for Ty -plans, Tech. Report, Computer
Science Department, Louisiana State University, Baton Rouge, LA, 1989.
[10] J. E.HASSETT, Automated layout in ASHLER: an approach to the problem of “general cell” layout for VLSI,
in Proc. 19th Design Automation Conference, 1982, pp. 777-784.
[11] B. T. PREAS AND W. M. VANCLEEMPUT, Placement algorithms for arbitrary shaped blocks, in Proc. 16th
Design Automation Conference, San Diego, CA, 1979, pp. 474-480.
[12] J. RoTH, R. HASHIMSHONY, AND A. WACHMAN, Turning a graph into a rectangular floor plan, Build. En-
viron., 17 (1982), pp. 163-173.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 102-113, February 1993 009

TALLY VERSIONS OF THE SAVITCH AND IMMERMAN-SZELEPCSENYI
THEOREMS FOR SUBLOGARITHMIC SPACE*

VILIAM GEFFERT'

Abstract. It is shown that for each s(n)-space-bounded nondeterministic Turing machine recognizing a
language L C 1* there exists an equivalent deterministic O(s2(n))-space-bounded machine, and also a non-
deterministic O(s(n))-space-bounded machine recognizing the complement of L, for any s(n), independent
of whether s(n) is below log(n) or is space constructible. In other words, the Savitch [J. Comput. System Sci.,
4(1970), pp. 177-192] and Immerman-Szelepcsényi [SIAM J. Comput., 17(1988), pp. 935-938], [Acta Inform.,
26(1988), pp. 279-284] theorems can be extended to any space bound s(n) for languages over a single-letter
alphabet.

Key words. space bounded computation, nondeterministic Turing machine, nondeterministic space, tally
sets

AMS(MOS) subject classifications. 68Q15, 68Q75, 68Q05

1. Introduction. Two of the most important results in space-bounded complexity
theory, Savitch’s simulation of nondeterministic space-bounded Turing machines by de-
terministic space-bounded machines [4] and the Immerman-Szelepcsényi proof that
nondeterministic space is closed under complement [3], [6], were proved for only space
bounds s(n) > log(n). If these facts are taken into consideration, the question of
whether these two results can be extended to sublogarithmic-space bounds naturally
arises. Although we do not give a complete answer, we show that for tally sets, i.e., for
languages over a single-letter alphabet, the Savitch and Immerman-Szelepcsényi theo-
rems are valid for any space bound s(n), independent of whether s(n) is below log(n) or
is space constructible.

In fact, these two theorems are also valid for languages over the binary-tape alphabet
with low information content, e.g., if there exists a constant d such that each word in L
of length n contains at most d*(™) zeros.

The situation is much more complicated for space-complexity classes below log(n)
than for those above, because we do not have enough space to count the number of
reachable configurations or the length of a computation path and hence we cannot use
the deterministic simulation [4] or the inductive counting method [3], [6] directly. More-
over, each machine using less than log(n) space is physically incapable of verifying that
it has returned to the same input-tape position after moving its input-tape head too far,
because it does not have enough space to remember a position of the input-tape head.

We shall begin in §2 by showing that the result of any computation on tally input is
completely determined by the machine’s behavior near the input-tape end markers. For
the detailed proofs of the lemmas presented in §2 the reader is referred to [2]. Section 3
deals with the closure under complement. The construction is based on a modified ver-
sion of the standard inductive counting algorithm [3], [6], which calls as its subprogram
another version of the inductive counting algorithm. In §4 we shall show that the same
technique can be applied to Savitch’s deterministic simulation [4] as well, that is, one
version of the deterministic simulation algorithm calls another one. Section 5 discusses
some extensions and the fundamental difference between the methods presented here
and the standard Savitch and Immerman-Szelepcsényi algorithms for s(n) > log(n).

*Received by the editors May 24, 1991; accepted for publication (in revised form) January 24, 1992. This
work was supported by research grants SPZV 1-1-5/08 and MSMS SR 01/46.
tDepartment of Computer Science, University of P. J. Safarik, Jesenna 5, 04154 Kogice, Czechoslovakia.

102

TALLY SETS IN SUBLOGARITHMIC SPACE 103

2. Nondeterministic computations of tally inputs. We shall consider the standard
Turing machine model having a two-way read-only input tape, a finite control, and a
separate semi-infinite two-way read-write work tape. This model was introduced in [5]
for studying computations requiring less than linear space. A nondeterministic Turing
machine is s(n)-space bounded if all computation paths on all inputs of length n use at
most s(n) tape squares on the work tape.

DEFINITION 1. (a) A memory state of a Turing machine is an ordered triple ¢ =
(r,u, 7), where r is a state of the machine’s finite control, u is a string of work-tape sym-
bols written on the work tape (not including the left end marker and blank symbols), and
7 is a position of the work tape head.

(b) A configuration is an ordered pair k = (g,), where ¢ is a memory state and ¢ is
a position of the input-tape head.

It is not too difficult to verify that for each s(n)-space-bounded nondeterministic
Turing machine there exists a constant ¢ > 6 such that the number of different memory
states for inputs of length n is at most ¢*™+*1, Similarly, the number of configurations
can be bounded by nc*(™+1 for eachn > 1. Thus we have a constant c such that for each
n>1

6 <c,
(1) number of memory states < c*(™+1,

number of configurations < nc*(M+1,

Note that we need only ©(s(n)) space to remember a memory state, but we need
O(s(n)+log(n)) space to remember a configuration. The same amounts of space are re-
quired to count the number of memory states and the number of configurations, respec-
tively. That is why the Savitch and Immerman-Szelepcsényi algorithms can be applied
only to space bounds satisfying log(n) € O(s(n)).

In particular, both the Savitch and Immerman-Szelepscényi theorems are valid if
n < (esm+ 1)6, since then the position of the input-tape head can be stored in O(s(n))
space, as can be a particular configuration or number of reachable configurations. There-
fore, we shall now concentrate on nondeterministic Turing machines using very little
space, i.e., with

(2) (c*M+1)8 <,

The computations taking place very close to the input-tape end markers play a domi-
nant role for such machines when they are computing on tally inputs. In fact, the result of
any computation [2] on a tally input is completely determined by computation paths not
moving the input head farther than (c*(™+1)3 positions away from the tape end markers.
To make these ideas more precise, we shall need some lemmas. For the detailed proofs
of Lemmas 1, 3, and 4 the reader is referred to [2]. All proofs are based on the assump-
tion that (c*(™+1)6 < n. In what follows we shall therefore assume that the input word

is 1" and that the space bound s(n) satisfies (cs(”)“)6 < n. Define

M= c.~3(n)+1

to be an upper bound on the number of reachable memory states for input 1".
LEMMA 1 [2, Lem. 3]. If there exists a computation path from the configuration ky =
{(q1,1) to the configuration ks = {(qo, 1), i.e., beginning and ending at the same position on

104 VILIAM GEFFERT

the input tape, such that the input head never visits the right end marker, then the shortest
computation path from (q1, 1) to (go, i) never moves the input head farther than M? positions
to the right of i.

By symmetry a similar statement holds for computation paths from (g, i) to {gs, ?)
that never visit the left end marker.

The next lemma states that the optimal computation paths beginning and ending
very close to the end markers never move the input head too far, nor do they consume
too much time.

LEMMA 2. If there exists a computation path from the configuration k1 = {(q1,11) to
ky = (g2, i2), where iy < M*+ M and i, < M* + M, such that the input head never visits
the right end marker, then the shortest computation path from k, to ko (a) never moves the
input head more than M?® positions away from the left end marker and (b) never executes
more than M steps. The same holds for computation paths beginning and ending closer
than M* + M positions from the right end marker.

Proof. (a) Suppose that the rightmost configuration in the shortest computation path
from k; to ky is k = (g, 1), where i > M5. Because M = c*™+1 > ¢ > 6, by (1), we have
that M® — (M* + M) > M?2. Since both i; and 4, lie to the left of the position M* + M,
we can find two configurations &} = (g}, M* + M) and k} = (g, M* + M) such that
the shortest computation path from k] to k5 moves the input head to the position ¢, i.e.,
more than M? positions to the right (see Fig. 1), but this is a contradiction by Lemma 1.

=
2 -- -

FiG. 1

(b) Furthermore, since there are at most M* different configurations with the input-
head positions bounded by M5, the shortest computation path from k; to k2 executes at
most M6 steps. If not, some configuration would have been repeated. a

The following lemma shows that computation paths on tally inputs are position in-
dependent provided that they begin and end at least M? + 1 positions away from either
end marker.

LEMMA 3 [2, Lem. 4]. If machine A can get from configuration (qi,1) to {gz,i + £)
by a computation path visiting neither of the end markers, then A can get from {(q.,j) to
(g2,7 + £) for each j satisfying

M?24+1<j<n—(M?+1),
M?2+1<j+£<n—(M?2+1).

TALLY SETS IN SUBLOGARITHMIC SPACE 105

The proof uses Lemma 1 and the fact that the input head scans the same symbols
(ones) everywhere along the tape with a tally input.

The following lemma asserts that the nondeterministic machine A, having a com-
putation path that traverses the whole input from left to right (or vice versa), has one
path that repeats a single loop on most of the input, beginning and ending in the same
configurations at the endmarkers. A4 loop of length ¢ is a computation path starting in
configuration (g, ¢) and ending in (g, ¢ + ¢) for some memory state g and tape position 4.
Moreover, neither of the end markers is visited by the input head during this computa-
tion.

LEMMA 4 [2, Thm. 1]. Each computation path beginning in configuration {(q1,0) and
endingin (g2, n + 1) such that the end markers are visited only in (g1, 0) and (g2,n + 1) can
be replaced by an equivalent computation path visiting the end markers only in (q1,0) and
(g2, n + 1) such that machine A,

(a) having traversed s, input-tape positions,

(b) gets into a loop of length £ that is iterated r times and

(c) then traverses the rest of the input tape of length so
for some sy, 4, T, s such that

M?4+1< s < M4,
3) M? +1< sy < M4,
1<¢< M.

The same holds for traversals from right to left (see also Fig. 2).

Py

s 1 S2
€ r - times >
FiG.2

A configuration is extending if it has used space k on the work tape and is going to
use space h + 1 on the next computation step (by rewriting the leftmost blank on the
work tape by a nonblank symbol).

LEMMA 5. For each s(n)-space-bounded nondeterministic Turing machine A there ex-
ists an equivalent machine A’ such that foreach h = 0, - - - , s(n) there exists a configuration
having used exactly h space on the work tape with the input head positioned at the left end
marker (reachable from the initial configuration). Moreover, A’ accepts with the input head
at the left end marker.

Proof. We can replace the original machine A by a new machine A’ that simulates A
but that, each time A gets into an extending configuration, nondeterministically decides

106 VILIAM GEFFERT

whether to carry on the simulation or to move the input head to the left end marker,
extend the work tape space, and then halt and reject the input. Machine A’ has more
computation paths than does the original machine A, but all new computation paths are
terminated in nonaccepting configurations, and hence both A and A’ recognize the same
language. A similar idea can be used for accepting configurations as well. 0

3. Inductive counting. The reader is assumed to be familiar with the Immerman—
Szelepcsényi proofs that nondeterministic space is closed under complement for each
space bound s(n) > log(n) [3], [6]. The idea is that if for each s(n)-space-bounded
nondeterministic machine A we could compute d, the exact number of distinct config-
urations reachable from the initial configuration, then we could recognize L(A) in s(n)
space.

Simulate, d times, a computation of A from the very beginning along a (nondeter-
ministically chosen) computation path, and check whether these d simulations are ter-
minated in d different configurations in a lexicographically increasing order. This can be
done in O(s(n)+log(n)) space because all we have to remember is d, a variable i to count
from 1 to d, a current configuration along some computation path, and the configuration
resulting from the previous simulation in order to check that these d configurations are
generated in increasing order so that none of them is generated twice. For the right se-
quence of nondeterministic guesses we shall reach d distinct configurations in increasing
order and accept the input if and only if none of these d configurations is an accepting
configuration.

The proof that the number of reachable configurations can be computed in space
O(s(n) + log(n)) is shown by induction on the number of steps. We shall present this
result in a slightly modified form. The algorithm computing the number of reachable
configurations is used to test whether a configuration k2 can be reached from k; by a
computation path executing at most ¢¢ steps for any given k1, k2 and time limit ¢4.

To do this we need to compute d, defined as the number of configurations reachable
from a configuration k; by computation paths executing exactly ¢ steps, for any given k;
and ¢.

Clearly, d = 1 for t = 0. Having computed d, we can compute d’, the number
of configurations reachable from k;, by computations executing exactly ¢ + 1 steps. To
do this, for each target configuration k’ generate the d distinct configurations reachable
from k; in ¢ steps in lexicographically increasing order. Verify whether, among these d
configurations, there is a configuration k such that k’ is reachable from & in one step,
and increment d’ in this case.

Now, if we want to check whether a configuration k, can be reached from k; by a
computation path executing at most ¢ steps, we must successively check for each ¢t =
0,...,tlif ko is equal to any of the configurations reachable from k; in exactly ¢ steps.

Because this algorithm will be used in several modifications on different levels, we
shall present it using a more formal notation, in the form of a Boolean function
test (k1, k2, t€) such that (a) if a configuration k is reachable from k; by a computation
path executing at most ¢¢ steps, then the test will return TRUE in at least one computa-
tion path and no computation path will return FALSE; (b) if & is not reachable from k;
in ¢ steps, then the test will return FALSE in at least one computation and no computa-
tion will return TRUE. Note that the test may also halt the computation and reject the
input returning no value if it finds that a wrong nondeterministic choice has been made.

TALLY SETS IN SUBLOGARITHMIC SPACE 107

1 function test(ki, k2, t€)

2 d:=1

3 fort:=0totl{do

4 d:=d;d :=0

5 for each k’ do

6 kprev := Kzero; increment := 0

7 fori:=1toddo

8 k := simulation_result(ky, t)

9 if k = k2 then return TRUE
10 if k < kprev then reject

11 if step(k, k') then increment := 1
12 kprev :=k

13 end

14 d’' :=d’' + increment

15 end end

16 return FALSE

17 end

In the algorithm above, “for each k’ do . ..end” denotes the loop that is executed for
each configuration &’ not using more than s space, where s is a global variable stored
on a separate work tape track. k,ero is @ constant representing a dummy configuration
that lexicographically precedes any other configuration. k., is not reachable from any
other configuration. simulation_result(k;,t) is a nondeterministic function returning a
configuration that is reachable from k; by a computation path executing exactly ¢ steps. It
simply simulates machine A from k; and counts the simulated steps up to ¢. This function
may halt the entire computation and reject the input if it finds that the computation path
ends, not having executed ¢ steps. The reject procedure halts the computation and rejects
the input, and Boolean function step(k, k') returns the value TRUE if and only if £’ is
reachable from k in one computation step.

Clearly, if we want to determine whether &, is reachable from k;, it is sufficient to use
test(ky, k2, nc*™+1) because the shortest computation path from k; to k, cannot enter
the same configuration twice and there are at most nc*(™*! = nM distinct configura-
tions. In particular, we can test whether any of the accepting configurations is reachable
from the initial configuration. It can easily be seen that all variables then require at most
O(s(n) + log(n)) space.

We shall now show that the space used can be reduced to O(s(n)) if we consider
computations on the input 1*. By the lemmas presented in §2 the actions of the nonde-
terministic machine on tally inputs can be understood as a combination of moves that
are close to one of the end markers of the input tape (at a distance of at most M*) to-
gether with long marches between the end markers. Moreover, these long marches can
be replaces by fixed loops of lengths less than or equal to M. Space O(s(n)) suffices to
describe these situations.

Using inductive counting, by induction on the number of times the input head hits an
end marker (instead of single computation steps), we shall construct a procedure that
checks whether there is a computation path connecting two configurations that have
the input head positioned at the end markers. This procedure calls as its subprogram
another version of the inductive counting algorithm that is used to analyze computations
that are close to one of the end markers.

First, we shall show that the space O(s(n)) is sufficient for analysis of computations
taking place entirely within positions 1 and M. The following modifications are re-
quired in the procedure test:

Line 5. The loop is iterated for each configuration &’ not using more than s space,
such that the input head is between positions 1 and M5, where s and M are global vari-

108 VILIAM GEFFERT

ables stored on separate work tape tracks and M is equal to c*+1.

Line 8. The function simulation_result(k, t) is replaced by a nondeterministic func-
tion L_simulation_result(k;,¢), which returns a configuration reachable from k; by a
computation path executing exactly ¢ steps, neither moving the input head to the right of
M? nor visiting the left end marker (position 0). This procedure simulates A from k; and
counts the simulated steps. It rejects the input (returning no configuration) if machine
A moves the input head to the right of position M5 or scans the left end marker or if the
chosen computation path terminates too early, not having executed ¢ steps.

The above modifications give function L_test(k;, k2, t£), which checks whether con-
figuration k. is reachable from k; by a computation executing at most ¢/ steps taking
place entirely within positions 1 and M5 or rejects the input because of a wrong non-
deterministic decision. The procedure simply uses inductive counting to compute the
number of configurations reachable by computation paths taking place between posi-
tions 1 and M°.

Note that by Lemma 2 we can check whether configuration k is reachable from k;
by a computation path visiting neither of the end markers by the use of L _test(k1, k2, M)
for each k; = (ql,il) and k; = <Q2,i2) such that1 <¢; < M* +M,1<1i3 < M4+ M,
because the shortest computation path from &, to k2 never moves the input head to the
right of position M? nor does it execute more than M steps, since both the initial and
final positions are to the left of M* + M. It is not difficult to verify that L _test then uses
at most O(s(n)) space.

Now we can easily construct function L_L_path(qi, ¢2), which checks whether there
exists a computation path from memory state g; to g beginning and ending at the left
end marker such that the end markers are visited only in ¢; and g»:

function L_L_path(q1, ¢2)
if step({q1,0) , (g2,0)) then return TRUE
for each p;,ps do

if step((q1,0) , (p1,1)) and step((p2, 1) , (g2, 0)) and
L_test({p1,1), (p2,1), M6)
then return TRUE
end
return FALSE
end

The construct “for each p;, p2 do ...end” denotes two nested loops that are iterated
for all memory states not using more than s space.

DEFINITION 2. An R-configuration is an ordered pair & = (g,), where ¢ is a memory
state and 1 is a distance between the input-tape head and the right end marker.

Clearly, for each configuration (g, i) there exists a corresponding R-configuration
(g,n + 1 — i), and vice versa. We introduce this notion only to have a space-efficient
coding for configurations with the input head positioned close to the right end marker.

We can now design procedures R_step, R_simulation_result, R_test, and R_R_path
that, by symmetry, mirror step, L_simulation_result, L_test, and L_L_path, respectively.
That is, R_step(k, k') returns TRUE if and only if R-configuration &’ is reachable from
R-configuration & in one computation step, and R _test(k;, k2, t¢) checks whether R-
configuration k; is reachable from k; by a computation path executing at most ¢£ steps,
neither moving the input head more than M? positions away from the right end marker
nor visiting the right end marker. For R-configurations with the input head less than
M* + M positions to the left of the right end marker, R _test(k;, k2, M®) checks whether
k is reachable from k; by a computation path visiting neither of the end markers.
R_R_path(q, g2) checks whether there exists a path from memory state ¢; to g begin-

TALLY SETS IN SUBLOGARITHMIC SPACE 109

ning and ending at the right end marker, visiting the end markers only in ¢; and g¢5.

We shall now construct a function L_R_path(q1, ¢2), which checks whether there ex-
ists a computation path from memory state q; to go traversing the entire input from left
to right such that the end markers are visited only in ¢; and g2. By Lemma 4 it is sufficient
to check whether there exist s, ¢, r, s, satisfying (3) and a memory state p such that

(a) (p, s1) is reachable from (g, 0),

(b) (p, s1 + (i + 1)£) is reachable from (p, s; + i£), foreachi =0, ---,r — 1, and

(c) (g2,n + 1) is reachable from (p,n + 1 — s3) = (p, s1 + r¥) (see Fig. 2). Because
the end markers are visited only in ¢; and ¢, condition (a) can be verified by using
L_test({(p1,1), (p, s1) , M®) for each memory state p; such that (p;, 1) is reachable from
(g1,0) in one step. The same holds for (c), but we shall use R-configurations instead to
reduce the space used.

From Lemma 3 it follows that, having verified that (p,s; + £) is reachable from
(p, 51), we have verified that (p, s; + (i + 1)£) is reachable from (p, s; + i£) for each
i > 0 provided that both s; + ¢ and s; + (i +1)£ are at least M? + 1 positions away from
either end marker. This is satisfied for eachi = 0,---,r — 1, since s; > M? + 1 and
83 > M?+1by (3) (see Lemma 4). It only remains to check whether s; +7£+s5 = n+1.
Note that we must store s1, s2 and ¢, but not r, on the work tape. We can verify whether
(n+1— 51 — s2) mod £ = 0 by moving the input head s; + s2 positions to the right
from the left end marker and checking whether the rest of the tape can be divided into
segments of equal length £. We are now ready to present the algorithm:

function L_R_path(q1, g2)
for each p, p1,p2 do
for s1,s2 := M2 +1to M*do
for £ :=1to M do
if step({q1,0) , (p1,1)) and
L_test((p1,1), (p,51) , M%) and
L test((p, s1) , (p, 51 + £) , M6) and
R—teSt«p’ 32)) <P2, 1) ’ M6) and
Ristep((p2, 1) , (g2, 0)) and
(n+1—s1 —s2)modf=0
then return TRUE
end end end
return FALSE
end

In the algorithm “for each p, p;, p2 do - - - end” denotes three nested loops iterated for
all memory states not using more than s space.

A similar algorithm can be used for the function R_L_path(q, ¢2), which checks
traversals from right to left.

DEFINITION 3. An M-configuration is an ordered pair k = (g, m), where ¢ is a
memory state and m € {L, R}, where L and R denote the left and right end markers,
respectively.

M-configurations will be used to identify configurations with the input head scan-
ning the end markers. Combining L_L_path, R_.R_path, L_R_path, and R_L_path, we
obtain

function M _step({g1,m1), (g2, m2))

return mj._-mg_path(qi, g2)
end

which checks whether there exists a computation path from M-configuration (g;,m;) to
M-configuration (g2, my) by visiting the end markers only in (g1, m;) and (g2, m2).

110 VILIAM GEFFERT

Now, using inductive counting again, we can construct a function M_test(k1, k2, t£),
which checks whether there exists a computation path from M-configuration k; to M-
configuration k; such that the input head visits the end markers at most ¢£ times.

The algorithm uses induction not on the number of single computation steps but,
rather, on the number of times the input head visits the end markers. Having computed
d, the number of M -configurations reachable from k; by computation paths visiting the
end markers exactly ¢ times, we can compute d’, the number of M-configurations reach-
able from k; by computations visiting the end markers exactly ¢t + 1 times. For each
target M-configuration &’ generate the d distinct M-configurations reachable from &,
by exactly ¢ visits to the end markers and verify whether there is an M-configuration k&
such that &’ is reachable from k by a computation path visiting the end markers only in
k and %’ by using the function M_step. Increment d’ in this case.

We shall need some modifications in the procedure test:

Line 5. The loop is not iterated for each configuration; rather it is iterated for each
M-configuration &k’ not using more that s space on the work tape.

Line 11. The function step(k, k') is replaced by M_step(k, k).

Line 8. The function simulation_result(k;,t) returning a configuration reachable
from k; by a computation executing ¢ steps is replaced by nondeterministic function
M_simulation_result(k;, t), which returns an M-configuration reachable from M -config-
uration k; by a computation path visiting the end markers exactly ¢ times not including k;
itself. This procedure simulates the original machine A from k; and counts the number
of times the head visits the end markers instead of counting single computation steps.
The input is rejected and the entire computation is halted if the chosen path terminates
without having visited the end markers ¢ times. The only M-configuration returned for
t = 0 is k; itself.

Clearly, M_test(k1, k2, 2M) checks whether M-configuration k; is reachable from
M -configuration k1, since there are at most 2M distinct M-configurations and therefore
the shortest computation path from k; to k2 cannot visit the end markers more than 2M
times. By using this it can easily be shown that M_test uses at most O(s(n)) space.

By Lemma 5 there is no loss of generality is assuming that the original machine A
accepts with the input head at the left end marker. Therefore, it is sufficient to check
whether any accepting M-configuration with the head at the left end marker is reachable
from the initial M-configuration (g;, L). However, two problems arise here. First, we
do not know a priori how much space machine A is going to use. This can be overcome
by testing for s = 1,2,--- if A is going to use at least that much space. By Lemma 5
we may assume without loss of generality that if A uses s(n) space on the work tape,
then for each h = 0,---,s(n) there exists a configuration reachable from the initial
configuration that uses exactly 4 space with the input head at the left end marker. Hence
it is sufficient to iterate over all M-configurations having used exactly space s with the
input head at the left end marker and to check whether any of these is reachable from
(g1, L). We shall interrupt the work-tape space extension when we reach s such that
no M-configuration using exactly space s at the left end marker is reachable from the
initial M-configuration. Second, our strategy is based on Lemmas 1, 3, and 4 [2], i.e.,
on the assumption that M8 = (c*(™+1)6 < n. Fortunately, if n < (c*(™+1)6 = M8,
then the STANDARD inductive counting algorithm [3], [6] uses at most O(s(n)) space,
since then log(n) € O(s(n)). Therefore, each time the work-tape space s is extended we
should check whether M® = (c**1)¢ < n and decide whether to proceed further or to
switch to the standard inductive counting procedure.

Combining the ideas above, we get the following main program:

TALLY SETS IN SUBLOGARITHMIC SPACE 111

procedure main
8:=0; M :=¢;extend := 1
while extend = 1 and M% < ndo
extend := 0
for each g do
if worktape_space_used (¢) = s and
Mtest((qr, L) , (g, L) , 2M)
then extend := 1
end
s:=s8+1; M :=c5t1
end
if M® > n then STANDARD else begin
for each g do
if accepting(q) and
M-teSt(<QI1 L)) <‘I1 L) yZM)
then reject
end
accept
end end

By the argument above we have the following theorem:

THEOREM 1. For each s(n)-space-bounded nondeterministic Turing machine recog-
nizing a language L C 1* there exists a nondeterminisic O(s(n))-space-bounded Turing
machine recognizing the complement of L for each s'n), independent of whether it is below
log(n) or is space constructible.

4. Deterministic simulation. The same approach can be applied to Savitch’s theo-
rem [4]. Consider the deterministic version of the function test:

1 function test(k, k2, tf)

2 if k1 = ko then return TRUE

3 if t¢ = 1 then return step(k;, k2)

4 for each k do

5 if test(k1, k, | t£/2]) and test(k, k2, [t£/2])
6 then return TRUE

7 end

8 return FALSE

9 end

We have used the same function step but no nondeterministic function like simula-
tion_result. The procedure uses O(s(n) + log(n) + log(tf)) local space, but it calls itself
recursively. The depth of recursion is bounded by [log(4)].

The basic idea of the proof is the same as it was for the nondeterministic simulation.
The deterministic version of L_test will use O(s(n)) local space to store configurations
that have input-head positions bounded by M?®. The same amount of local space is suf-
ficient for the time limit ¢¢ bounded by MS. The depth of recursion for L_test is then
bounded by [log(M®)] € O(s(n)), which gives the total space O(s%(n)). The same
amount of space is sufficient for R_test and also for the deterministic recursive variant
of M_test, calling M_step instead of step (cf. the deterministic function test, line 3) with
t¢ bounded by 2M. Savitch’s STANDARD procedure that is called in the main program
also uses at most O(s%(n)) space if n < MS.

We can now establish the following theorem:

THEOREM 2. For each s(n)-space-bounded nondeterministic Turing machine recogniz-
ing a language L C 1* there exists an equivalent deterministic Turing machine that is space
bounded by O(s%(n)) for each s(n), independent of whether it is below log(n) or is space
constructible.

112 VILIAM GEFFERT

5. Conclusion. The above idea can be used not only for tally inputs but also for
binary inputs with a low information content, e.g., for strings not containing too many
Zeros:

DEFINITION 4. A language L C {0,1}* is f(n)-zero-bounded if each w € L of length
n contains at most f(n) zeros.

THEOREM 3. For each s(n)-space-bounded nondeterministic Turing machine recog-
nizing an f(n)-zero-bounded language L, such that the value of f(n) can be computed and
stored in O(s(n)) space, there exists a nondeterministic O(s(n))-space-bounded Turing ma-
chine recognizing the complement of L and also an equivalent O(s%(n))-space-bounded
Turing machine that is deterministic.

Note that we have to compute f(n) by using O(s(n)) space only, but s(n) itself need
not be fully space constructible.

Proof. We state only the basic ideas for the inductive counting, since the proof is
very similar to the arguments presented above. (A similar argument can be used for the
deterministic simulation.)

First, compute f(n), and store this value on a separate work-tape track. Accept the
input if the number of zeros on the input tape exceeds f(n).

Otherwise, we must simulate the original machine A. Because f(n) can be stored in
O(s(n)) space, there is a constant d such that f(n) < d*™). Since there are at most d*(™)
zeros on the input tape, there can be at most c3(™*1d*(") so-called Z-configurations, i.e.,
with the head scanning a symbol zero on the input tape.

No optimal computation path enters the same Z-configuration twice, and there-
fore we shall consider only computation paths scanning zeros on the input tape at most
c$(M+14s(n) times. (In fact, the value of ¢*t* f(n) will be computed and stored on a sep-
arate work-tape track. Because s is not known at the beginning of the computation, this
value is recomputed each time s is extended.)

Moreover, each Z-configuration can be stored on the work tape by using only O(s(n))
space because the input tape position can be coded by the number of zeros lying to the
left of the current position.

Using inductive counting, we can now generate and count all Z-configurations that
are reachable from the initial configuration by induction on the number of times the
input head scans zero.

‘We must call a nondeterministic Z-configuration generator, i.e., a function Z_simula-
tion_result(k, t) returning a Z-configuration reachable from Z-configuration k by a com-
putation path scanning zeros on the input exactly ¢ times.

Second, we shall need a single Z-step verifier, i.e., a function Z_step(ky, k2) to check
whether Z-configurations k; and &, can be connected by a computation path scanning
zeros only in k; and ky. Such a computation path can be found only if k; and k; scan the
same zero on the input tape or if they scan two adjacent zeros, i.e., two zeros separated by
1k, for some k > 0. Return FALSE if this is not satisfied. Now consider the two adjacent
zeros. (The argument for the first case is very similar—by Lemma 1—and therefore
is omitted.) Compare k, the distance between these two zeros, with M. If k < MS,
then we shall call the standard inductive counting procedure and use the tape segment
between the two zeros as its effective input, measuring off the input-head positions from
the left zero. Otherwise, we shall use the strategy based on Lemma 4 (see §3, procedure
L_R_path).

The basic difference from the tally input recognition is that M® is compared not
at the beginning of the main program but each time the procedure Z step is called to
analyze computation paths between any two adjacent zeros. O

TALLY SETS IN SUBLOGARITHMIC SPACE 113

For example, the Savitch and Inmerman-Szelepcsényi theorems hold for each d*(™)-
zero-bounded language, where d is a constant, if s(n) is fully space constructible.

These two theorems hold for each L C a*b* for each s(n), independent of whether
s(n) is above log(n) or is space constructible, since there is a straightforward correspon-
dence between L and the 1-zero-bounded language L' = {1™01";a™b"™ € L}.

However, there is a very important difference between inductive counting in sublog-
arithmic space and the standard Immerman-Szelepcsényi result. Infact, the Immerman-
Szelepcsényi algorithm for s(n) > log(n) can be used to generate all configurations
reachable from any given configuration k, not only from the initial configuration. It
is this fact that is needed to prove that the alternating hierarchy of s(n)-space-bounded
machines collapses to £; —SPACE(s(n)). £, —SPACE(s(n)) and IT;—SPACE(s(n)) de-
note the classes of languages recognizable by alternating s(n)-space-bounded machines
making fewer than & alternations between universal and existential states with the initial
state existential and universal, respectively. This is not possible in sublogarithmic space
because we do not have enough space to remember the input-head position. Once we
have moved the input head too far, the tape position is lost. We cannot restart, over and
over again, computation paths beginning in the same configuration. On tally inputs this
is possible only for a restricted set of configurations with the input-head positions close
to the end markers. Fortunately, the initial configuration belongs to this set, and that is
why we were able to check whether there is an accepting reachable configuration.

However, we still have that II, — SPACE(s(n)) — £; — SPACE(s(n)) # 0 for each
s(n) between log log(n) and log(n) [7], [1]. An example [7] of a language over a single-
letter alphabet in II, — SPACE(s(n)) — X; — SPACE(s(n)) for each unbounded fully
space-constructible s(n) below log(n) is

L = {a™;n < least common multiple of 1,---,d*(™}.

There exist unbounded fully space-constructible functions below log(n), e.g., s(n) =
log(min{¢; ¢ does not divide n}) € O(log log(n)). However, none of these functions can
be monotone increasing [1], [2].

Acknowledgment. The author thanks Branislav Rovan for some remarks concerning
this work.

REFERENCES

[1] J. H. CHANG, O. H. IBARRA, B. RAVIKUMAR, AND L. BERMAN, Some observations concerning alternating
Turing machines using small space, Inform. Process. Lett., 25 (1987), pp. 1-9; Erratum, 27 (1988), p.
53.

[2] V. GEFFERT, Nondeterministic computations in sublogarithmic space and space constructibility, SIAM 1J.
Comput., 20 (1991), pp. 484-498.

[3] N.IMMERMAN, Nondeterminstic space is closed under complement, SIAM J. Comput., 17 (1988), pp. 935-
938.

[4] W. J. SAVITCH, Relationship between nondeterministic and deterministic tape complexities, Comput. System
Sci., 4 (1970), pp. 177-192.

[5] R.E.STEARNS,J. HARTMANIS, AND P. M. LEWIS 11, Hierarchies of memory limited computations, 1965 IEEE
Conference Record on Switching Circuit Theory and Logical Design, 1965, pp. 179-190.

[6] R. SZELEPCSENYIL, The method of forced enumeration for nondeterministic automata, Acta Inform., 26
(1988), pp. 279-284.

[7]1 A.SzEPIETOWSKI, Some remarks on the alternating hierarchy and closure under complement for sublogarith-
mic space, Inform. Process. Lett., 33 (1989), pp. 73-78.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 114-135, February 1993 010

NV-SEQUENTIALITY: A DECIDABLE CONDITION FOR CALL-BY-NEED
COMPUTATIONS IN TERM-REWRITING SYSTEMS*

MICHIO OYAMAGUCHTI!

Abstract. In 1979 Huet and Levy introduced the class of sequential term-rewriting systems in which call-
by-need computations are possible (without look-ahead) and defined the subclass called strongly sequential
systems for which needed redexes in a given term are effectively found [chapter in Computational Logic: Essays
in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin, eds., MIT Press, Cambridge, MA, 1991]. This paper
introduces a larger subclass that is a natural extension of strong sequentiality and is based on the analysis of
both the left-hand sides and part of the right-hand sides (i.e., the nonvariable parts) of systems, whereas strong
sequentiality is based on the analysis of left-hand sides alone. This new sequentiality is called NV-sequentiality.
It is shown that (i) the class of NV-sequential systems properly includes the class of strongly sequential systems,
(ii) there exists an algorithm for finding needed redexes for a given term when a system is NV-sequential, and
(iii) it is decidable whether an arbitrary left-linear system is NV-sequential.

Key words. term-rewriting system, call-by-need computation, sequentiality, strong sequentiality, left-
linear system

AMS (MOS) subject classification. 68Q50

1. Introduction. A term-rewriting system (TRS) is a set of directed equations (called
rewrite rules). TRSs are used as abstract interpreters of programming languages and
as formula-manipulating systems in various applications, such as theorem proving, rea-
soning about specifications, program optimization, and transformation (see [5], [6], [9],
[13]).

The notion of call-by-need computations has turned out to be fruitful in implementa-
tion of interpreters for (applicative) programming languages [5], [10], [21], [22]. Here a
computation step is said to be call-by-need if the step is necessary to reach a normal form
(or to obtain an answer). (This notion is closely related to that of strictness, which is im-
portant in functional programming (see [1]).) Huet and Levy [8] gave a more complete,
theoretical treatment of this subject for TRSs and used the notion of sequentiality given
in [11], [22] to define a subclass of TRSs for which the call-by-need computations are
possible (without look-ahead). Intuitively, a TRS is said to be sequential if, for any term
M that is not in normal form but can reduce to a normal form, there exists a redex in M
that we need to compute to obtain to a normal form of M and this redex (which is said to
be needed) can be determined without look-ahead. However, sequentiality was shown
to be undecidable for TRSs in [8]. This undecidability stems from the undecidability of
the reachability problem for TRSs. Here the reachability problem is the problem of de-
ciding, for two terms M and N, whether there exists a reduction sequence from M to N.
To overcome this difficulty a sufficient condition for sequentiality, called strong sequen-
tiality, was introduced in [8]. The notion of strong sequentiality is based on the analysis
of left-hand sides of rewrite rules alone. (In other words, it is similar to the sequentiality
condition for the set of new rewrite rules defined under the assumption that any redex
can reduce to an arbitrary term.) It was shown in [8] that needed redexes for a given term
are effectively found when we consider a strongly sequential system. Moreover, whether
a TRS is strongly sequential was shown to be decidable in [8]. For a refinement of the
notion of strong sequentiality, see [20], and for a related result on strong sequentiality

*Received by the editors December 18, 1989; accepted for publication (in revised form) December 17,
1991. This research was supported in part by the Alexander von Humboldt Foundation.
tFaculty of Engineering, Mie University, Tsu-shi 514, Japan (mo@info.mie-u.ac. jp).

114

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 115

with constructors, see [19]. For an alternative analysis of strong sequentiality and two
simplified proofs of the decidability of this property, see [12].

In this paper we introduce a new notion of sequentiality that is a natural extension
of strong sequentiality and is based on the analysis of both the left-hand sides and part of
the right-hand sides (i.e., the nonvariable parts) of systems, whereas strong sequentiality
is based on the analysis of left-hand sides alone. (In other words, this new sequential-
ity condition is sufficient for ensuring sequentiality under the assumption that for each
rewrite rule o — 3 every redex o(a), where o is a substitution, can reduce to any term
that contains the nonvariable part of 3 as the prefix (or upper) part. Note that reducing
o(a) to o'(3), where ¢’ is another substitution, is permitted, but reducing o () to any
term is not permitted. Thus this new sequentiality is based on relatively more precise
(or detailed) analysis than is strong sequentiality.) Henceforth this new sequentiality is
called NV-sequentiality, which is an abbreviation of sequentiality with respect to nonvar-
iable parts of right-hand sides.

We first show that the class of NV-sequential systems properly includes the class
of strongly sequential systems and that NV-sequentiality is a sufficient condition for se-
quentiality. (These results show that NV-sequentiality gives a wider class of TRSs, in
which call-by-need computations are possible, than does strong sequentiality.)

Next we show that for an NV-sequential system there exists a redex selection algo-
rithm deriving normal forms from given terms whenever they possess normal forms. To
show this we prove that the problem of deciding, for a term M and an occurrence (posi-
tion) u, whether u is a needed redex occurrence for obtaining the normal form of M is
reducible to the reachability problem for quasi-ground TRSs, which has been shown to
be decidable in [4], [15], [16]. Here a TRS is a quasi-ground system if for every rewrite
rule in the TRS the left-hand side is linear and the right-hand side contains no variables.
Thus we obtain a redex selection algorithm for NV-sequential TRSs. The algorithm
operates in polynomial time. Moreover, whether a left-linear TRS is NV-sequential is
shown to be decidable. The proof of this decidability leads to a new (perhaps simplified)
proof of the decidability of strong sequentiality that is different from the more algorith-
mic one given in [8].

This paper is organized as follows. Section 2 is devoted to standard definitions. The
notions of sequentiality and strong sequentiality are explained in §3, and the definition
of NV-sequentiality is given in §4. In §5 we give a redex selection algorithm for NV-
sequential TRSs, and in §6 we show that NV-sequentiality is decidable.

2. Definitions. We use € to denote the empty string and @ to denote the empty set.
For a set U we let ||U|| be the cardinality of U. We use N to denote the set of positive
integers and Ny to denote N U {0}.

The following definitions and notations are similar to those in [7]. Let X be a finite
set of variables, and let F be a finite set of operation symbols graded by an arity function
a: F — Nj. Let T be the set of terms constructed from X and F. That is, a term
either is a variable or is of the form fM, --- M, for some f € F with arity a(f) = n
and My,---, M, € T. For any M in T we define V(M) as the set of variables that occur
in M. Aterm M is called a ground term if V(M) = () and is called a linear term if no
variables occur more than once in M.

Let F,, = {f € Fla(f) = n}. We define several functions on terms: For any M in
Tlet M = x,wherez € X,or M = fM; --- M,,, where f € F,,. Then

(i) thesize |[M|: |z| =1,

|fMy---Mp| =1+ |[My|+ - + [Mnl;

116 MICHIO OYAMAGUCHI

(ii) the set of occurrences O(M) : O(z) = {e},
O(fM,---M,) ={e}U{iu|l <i<n,ueOM)};
(iii) the subterm M/u at occurrence u : z/e = x,

My Myfe= fM; - My,
My M,/iu = M;/u, 1<i<m;

(iv) Mu«— N]€T, whereuec O(M)andN €T:

Mle— N]=N

fMy - Myliu — N) = fMy -+ M;_y(Mj[u — N))Mjyy--- My, 1<i<mn;
(v) the height h(M) : h(z) =0,

{ 1+ Max{h(M;),---,h(My,)} ifn > 0;
h(fM1 Mn) =

0 otherwise;
(vi) the operation symbol Occ(M, w) at occurrence u:

Occ(z, €) = =, Occ(fM; --- My, €) = f,
Occ(fM; -+ - My, iu) = Occ(M;, u), 1<i<m

(vii) sub(M) = {M/ulu € O(M)}.

The set of occurrences O(M) is partially ordered by the prefix ordering v < v if and
only if 3w such that uw = v. In this case we denote w by v/u. If u £ vand v £ u, then
u and v are said to be disjoint and are denoted u|v. If u < v and u # v, thenu < v.

Let Ox (M) be the set of variable occurrences in O(M), i.e., Ox(M) = {u €
O(M)|M/u e X}.

A substitution o is a mapping ¢ : X — T, and o is extended to a mapping from
terms to terms: o(fM; --- M,) = fo(M,)---o(My) for f € F,.

A TRS is a finite set E of rules « — 3 such that o, 8 € T, and V(8) C V(). Let
Lg ={a|a— B € E}and Rg = {8|a — B € E}. For any substitution o and o € L,
o(a) is called a redex. A term M reduces to N at occurrence u if and only if M/u = o(c)
and N = M[u « o(B)] for some substitution o and rule « — 3 € E. In this case u is
called the redex occurrence of the reduction. We denote this reduction by M g N.
In this notation » and E may be omitted (i.e., M — N) and — is regarded as a relation
over T. Let —* and —* be the transitive closure and the reflexive-transitive closure of
—, respectively. Let —° be the identity relation, and let —*=— - —*~1 for k£ > 0. Let
—®=yk_ —ifork>0.

We define the size of system Eby -, 5 || + |B], which is denoted size(E).

DEFINITION 2.1. Lety : M 5 M;--- %5 M, be a reduction sequence. Then
v € O(M) is said to be safe for - if there exists no u;, 1 < ¢ < k, such that u; < v.

DEFINITION 2.2. For aterm M we use R(M) to denote the set of redex occurrences
inM,ie., R(M) ={u € O(M)|M/u = o(c) for some o € Lg and mappingo : X —
T'}. The minimal subset MR (M) of R(M) consists of the minimal occurrences of R(M)
in a sense of <. For example, if R(M) = {1, 2, 21}, then MR(M) = {1,2}.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 117

DEFINITION 2.3. A term M is a normal form if and only if R(M) = 0. In this case
M is also said to be irreducible. We denote the set of terms in normal form by NFg. We
use NF if E is clear in the context.

DEFINITION 2.4. A TRS E is said to be left-linear if every term « in L is linear and
is said to be a quasi-ground system if for every rule o — g in E, « is linear and 3 is a
ground term. TRS E is said to be nonoverlapping if there are no critical pairs [7], [13]

Notation. For aterm M let U = {uy,- -, up—1,un} C O(M), where uq,---,up
are pairwise disjoint. We use M[u; «— Ny, --,up—1 < Np_1,un, «— N,] to denote
(M[u; < Ny,---,up—1 < Np_1])[up «— N,]. We also use M[u; — N;,u; € U] to
denote this term.

Henceforth we will be dealing with a fixed TRS E = {a; — ;|1 < i < ng} and will
that E satisfies the following conditions:

(i) LENnX =0,

(ii) E is left-linear and nonoverlapping.

Note that by (ii) E is confluent, so that if a term M can reduce to a term in normal
form, then the normal-form term is unique (see [7], [9]).

3. Sequentiality and needed redex. We will first explain the notion of sequentiality.
Intuitively, a TRS E is sequential if and only if for any term M not in normal form there
exists a redex in M that we must compute to get to the normal form of M, and this redex
can be determined without looking at the subparts of M, which are not yet computed.
For a more precise explanation, we need some preliminaries.

First, a new constant symbol € (i.e., a(2) = 0) will be added to the set F’ of operation
symbols, and the augmented set of terms will be denoted by T,. We denote the set of
non-Q-terms constructed from F' U X by T. Members of T, will be called Q2-terms, and
an irreducible 2-term will be called an 2-normal form. Only irreducible terms in T are
said to be normal forms. Intuitively, 2 denotes the absence of information and is the
least information symbol (in denotational semantics [18]).

An information ordering on Ty, is defined as follows.

DEFINITION 3.1 [8], [18].

(i) Q< Mforal M € Tq.

(ii) Forfe FUX,fM;---M, < fN;--- N, ifand only if M; < N; forall 4,1 <
i<n.Heren=qa(f)if f € F,andn =0if f € X.

(iii) For f,g € FUX, fMy---M, £« gNy--- Ny, if f # g. Note thatif M € T,
then M < N ifandonlyif M = N. Wewrite M < Nif M < Nand M # N.

By this definition, however, we can easily show the following lemma concerning the
ordering <.

LEMMA 3.1. Let M, N € Tq. Then the following three statements are equivalent:

(i) M <N;

(ii) Ju € O(M) such that M/u < N/uand Mu — Q] < N[u « QJ;

(iii) M = N or there exists a set U C O(N) such that occurrences in U are pairwise
disjoint and M = N[u — Q,u € U].

The proof is straightforward, so it is omitted.

DEFINITION 3.2 [8]. For a term M € T we use Mg to denote the term obtained
from M by replacing all variables in M by , i.e., Mg = M[u — Q,u € Ox(M)].

DEFINITION 3.3. For an Q-term N € T, we use Oq(N) to denote the set of
occurrences in O(N), i.e., Oq(N) = {u € O(N)|N/u = Q}.

Next we define a normal-form predicate nfg, as follows:

DEFINITION 3.4 [8]. For M € Tq, nfg(M) = TRUE if and only if 3N € NFg such
that M —% N, that is, M can reduce to a normal form. nfz (M) = FALSE if and only if

118 MICHIO OYAMAGUCHI

nfg (M) # TRUE. We may omit the subscript F if E is clear in the context.

Note that NFg is a monotonic predicate under the assumption FALSE < TRUE,
i.e.,, M < N implies NFg(M) < NFg(N).

Assume that nfg (M) = TRUE and that M contains Q. Then note that all O’s in M
must be eliminated in the reductions to the normal form. We now define needed redex
occurrences as follows.

DEFINITION 3.5. Let nfg(M) = TRUE for M € T,. Then a redex occurrence
u € R(M) is said to be needed for the normal form if and only if nfg(M[u — Q]) =
FALSE. (This definition is equivalent to that in [5].) A reduction M % N is said to be a
call-by-need reduction (or computation) if u is needed for the normal form of M.

It has been shown that in A-calculus the leftmost reduction for any term is call-by-
need, but in TRSs the leftmost outmost reduction is usually not call-by-need (see [2],
[8]).

We now consider the case for which TRS E is left-linear and nonoverlapping. Let
M be an Q-term not in normal form. If there exists a reduction sequence vy : M —* N
for some N € NFg, then at least one outermost redex of M (i.e., M/u for some u in
MR(M) (see Definition 2.2)) must be evaluated in . As a stronger result, it was shown
in [8, Lemma 4.3] that there exists u in MR (M) needed for the normal form (i.e., M/u
must be evaluated for all reduction sequences v : M —* N such that N € NFg).
Generally, such an occurrence u depends on the subterms M/v/,v' € MR(M). For
example, in the case for which £ D {f(4,B,z) — C, f(z,A,B) — C, f(B,z,A) —
C'} a needed occurrence of an Q-term M = f(M;, M,, M3) depends on the contexts
My, My, Ms (e.g., if My, My, M3 are redexes and there is no reduction sequence such
that M3 —* A or M3 —* B, then occurrences 1 and 2 are needed, but if M3 —* B, then
occurrence 1 may not be needed [8]).

We now explain the notion of sequentiality of the predicate nfz. The notion is based
on the assumption that there exists a needed occurrence independent of the subterms
M/u,u € MR(M). Let M’ = M[u — Q,u € MR(M)], where MR(M) # 0. Note
that nfg(M’) = FALSE. Then the sequentiality condition is that there exists an occur-
rence u € MR(M) such that if N > M’ and nfg(N) = TRUE, then N/u # Q. That is,
sequentiality ensures that this occurrence u is a needed occurrence of M and that it can
be determined independently of the contents of the M /v’s, v € MR(M). The following
definition of a sequential predicate is given in [11] and [8].

DEFINITION 3.6. Let the truth values be ordered by FALSE < TRUE. Let P be a
monotonic predicate on T. An occurrence u of a term M is said to be an index of P in
M if and only if (i) M/u = Q and (ii) N > M and P(N) = TRUE (where N € Tg)
imply N/u # Q. (Note that P(M) is false if M has an index of P.) We use I(P, M) to
denote the set of indices of P in M. P is said to be sequential at M if and only if whenever
P(M) = FALSE and there exists N such that N > M and P(N) = TRUE, it follows
that there exists an index of P in M.

DEFINITION 3.7 [8]. TRS E is sequential if and only if the predicate nfg is sequen-
tial at every {2-normal form.

Unfortunately, sequentiality of TRSs is known to be undecidable, and indices of nfg
are not computable in general [8]. A sufficient condition for sequentiality, called strong
sequentiality, is given in [8]. The notion of strong sequentiality is based on the analysis
of the left-hand sides of rules alone, and the contents of the right-hand sides are ignored.
Precisely, strong sequentiality is defined as follows.

‘DEFINITION 3.8 [8]. From the set E of rewrite rules, a new reduction —; is defined
as follows: M —4 N if and only if M/u = o(a) and N = M[u « N'] for some

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 119

u € O(M), redex o(a) (Where @ € Lg and 0 : X — Tg), and N’ € T. Note that any
term N’ is allowed as the right-hand-side term of the rule, and L is the set of left-hand-
side terms of E. We define a predicate snfg as follows: snfz(M) = TRUE if and only if
3 N such that M —} N and N is in normal form; (i.e., N € NFg). (Note that snfg =
nfy; if we denote by st the set of the new rules {M — N|M —g N}.) ATRS E is said
to be strongly sequential if and only if snfg is sequential at every 2-normal form.

We will see in §4 that if a TRS E is strongly sequential, then E is sequential, and
for every Q2-normal form N if an occurrence u is an index of snfg in IV, then u is also an
index of nfg in IV, although these results have already been shown in [8]. Thus strong
sequentiality is a sufficient condition for sequentiality, and Huet and Levy [8] showed an
efficient algorithm to compute indices of snfg in a given Q-term. Hence by the previous
arguments it follows that a needed occurrence of a given Q-term M is efficiently com-
puted if TRS E is strongly sequential, nfz(M) = TRUE, and R(M) # 0. Moreover,
it is shown in [8] that if nfz (M) = TRUE, then every call-by-need reduction sequence
from M is normalizing, i.e., reaches the normal form in finite steps. Thus we can obtain
a redex selection algorithm that derives the normal form from a given term whenever it
has the normal form. Also, whether a TRS is strongly sequential has been shown to be
decidable [8].

As a related work, it has been shown that in left-linear and nonoverlapping TRSs if
a given term has the normal form, then every sequence of parallel-outermost reductions
(i.e., simultaneously rewriting all outermost redexes) from the term is normalizing (see

(31, [14]).

4. NV-sequentiality. In this section we introduce a condition called NV-sequenti-
ality, which is more general than strong sequentiality. The notion of NV-sequentiality
is based on the analysis of both the left-hand sides and part of the right-hand sides (i.e.,
the nonvariable parts) of systems, whereas strong sequentiality is based on the analysis
of the left-hand sides alone.

DEFINITION 4.1. From the set E of rewrite rules, a new reduction —, is defined
as follows: M —,, N if and only if Ju € O(M)3a — 3 € E such that M/u > aq and
N = M[u « N'] for some N’, where N’ > (. Note that Q is a redex of E if and only if
Q > agq for some a € Lg, since E is left-linear. So under the reduction —,,, any redex
Q@ > agq can reduce to any term N’ such that N’ > (g, where o — 3 € E.

Note that — ¢ D—,,2— g hold, and these reductions have the same set of redexes
(and the same normal forms). Using —,,, we now define NV-sequentiality as follows.

DEFINITION 4.2. A predicate term is defined as follows: term(M) = TRUE if and
only if 3N such that M —}, N and N € T. Note that N is a term and N does not
contain 2. A TRS E is said to be NV-sequential if and only if term is sequential at every
Q-normal form, that is, for any M in Q-normal form if (i) term(M) = FALSE and (ii)
there exists a term N such that N > M and term(N) = TRUE, then there exists an
index of term in M. Note that condition (ii) is always true. So from now on we will omit
(ii) from the definition of NV-sequentiality. The predicate term is defined over the new
reduction —,, but it is not defined over —g.

Note. To define NV-sequentiality we used the predicate term. Of course, we can use
a predicate similar to nfg to define another sufficient condition for sequentiality. That is,
we can define a predicate nvnfg (M) as follows: nvnfg (M) = TRUE if and only if AN €
NFpg such that M —}, N. Using this predicate, we can define a class of TRSs such that
nvnfg is sequential at every Q-normal form. In this paper we did not adopt this definition,
since it will be very difficult to obtain an (efficient) algorithm for finding indices of nvnf.

120 MICHIO OYAMAGUCHI

(We conjecture that the class of TRSs satisfying this sequentiality properly includes the
class of NV-sequential TRSs.)

We will give a relationship between sequential TRSs, NV-sequential TRSs, and
strongly sequential TRSs. We will show that the class of NV-sequential TRSs is included
in the class of sequential TRSs and properly includes the class of strongly sequential
TRSs. The following two technical lemmas are used to obtain this result.

LEMMA 4.1. Assume that NFg # 0. Then the following statements hold:

(i) term(M) = TRUE = snfg(M) = TRUE;

(ii) nfg(M) = TRUE = term(M) = TRUE

Proof. (i) By term(M) = TRUE we have M —Z* N for some N € T, so that
M —Z N holds. If N/u is a redex for some u € O(N), then we have a reduction
N —g N[u « N'],where N’ € NFg. Hence snfg (M) = TRUE by repeating the above
reductions. (ii) By nfg(M) = TRUE we have M —% N forsome N € NFg. ByN € T
term(M) is true. O

LEMMA 4.2. Let M be an Q-normal form. Let NFg # (. Then the following statements
hold:

(a) u € I(snfg, M) = u € I(term, M);

(b) u € I(term, M) = u € I(nfg, M).

Proof. By Definition 3.6, u € I(P, M) if and only if (i) M/u = Q and (ii)) N > M
and P(N) = TRUE = N/u # (for a predicate P.

Proof of (a). Letwu € I(snfg, M). That is, the above (i) and (ii) hold where P =
snfg. Assume that N > M and term(N) = TRUE. Then snfg(N) = TRUE holds by
(i) of Lemma 4.1. So N/u # Q by (ii) above, where P = snfg. Thus the above (i) and
(ii) also hold in the case for which P = term.

Proof of (b). This proof is similar to that of (a), except that Lemma 4.1(ii), i.e.,
nfg(M) = TRUE = term(M) = TRUE is used (instead of Lemma 4.1(i)). a

LEMMA 4.3. Let TRS E be left-linear and nonoverlapping. Let NFg # (. Then the
following statements hold:

(i) E is strongly sequential = E is NV-sequential,

(ii) E is NV-sequential = E is sequential.

Proof. Let M be an Q-normal form.

Prooff of (i). Assume that

(1) term(M) = FALSE and 3N, (N > M) A (term(N) = TRUE).

By (1) snf(M) = FALSE, since term(}M) = FALSE implies that M contains 2 and M
is in Q-normal form. Obviously, 3N’ such that (N’ > M)A (snfg(N’) = TRUE). (For
example, choose N’ € T such that N’ > M.) Hence strong sequentiality of £ implies
that there exists an index u € I(snfg, M). Hence by (a) of Lemma 4.2, u € I(term, M).
Thus E is NV-sequential.

Proof of (ii). Assume that

(2) nfg (M) = FALSE and 3N such that (N > M) A (nfg(N) = TRUE).

We first show that term(M) = FALSE. Since M is an Q-normal form, there is no redex in
M. Sonfg (M) = FALSE in (2) implies that M contains at least one Q. Thus term(M) =
FALSE, as claimed. Hence NV-sequentiality of F implies that there exists an index
u € I(term, M). So by (b) of Lemma 4.2, u € I(nfg, M). Thus FE is sequential. O
We can obtain a TRS FE that is NV-sequential but not strongly sequential.
Example 4.1. Let

E={f(f(a,2),f(b,y)) — f(e,e), f(f(z,a), f(c,y)) — f(e,e), f(d,d) — f(e,e)},

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 121

where a,b,c,d,e € Fy, f € F», and z,y € X. Note that E is similar to that given in
[8, p. 27], and E is not strongly sequential since f(f(€2,), f(f(€2, 2),2)) has no index.
(However, note that occurrence 22 in this term is an index of term.) We can show that
E is NV-sequential. We omit the proof. (A reader who is interested in the proof may
refer to the previous version of this paper [17].) A general algorithm for checking NV-
sequentiality will be given in §6.

By Lemma 4.3 and Example 4.1 we have the following theorem.

THEOREM 4.1. (i) The class of NV-sequential TRSs properly includes the class of
strongly sequential TRSs.

(ii) The class of NV-sequential TRSs is included in the class of sequential TRSs.

Note. Properness of (ii) in Theorem 4.1 can be proved since NV-sequentiality is
shown to be decidable in §6, but sequentiality is undecidable in general. As a concrete
candidate for a sequential TRS that is not NV-sequential, we give the following TRS E,.

Example 4.2. Let

E, = {f(g(a) $)>a) - c,f(g(a:, a)’b) -G f(k:(a),a:) - g(b) b) - h(b),h(.’l))—>k)($)},

where a,b,c € Fy, f,g € Fy,h,k € F;, and z € X. Note that E is similar to that
given in [8, p. 26]. We can show that E, is not NV-sequential, because f(g(€2,),2)
has no index of term. (Note that occurrence 2 is not an index, since f(g(b,b), Q) —ny
f(h(b),) —ny f(k(a),R) —ny c.) The author thinks that E, is sequential, although the
formal proof has not been given.

5. Redex selection algorithm. In this section we consider the problem of deciding,
for an Q-term N and an occurrence v € O(N), whether u is an index of term in N,
i.e., u € I(term, N). We show that this problem is decidable. From now on we call this
problem the term I-problem.

Notation. For N € Tq let I,(N) = I(term, N).

Let M be aterm in T, where MR(M) # 0, and let TRS E be NV-sequential, where
E is left-linear and nonoverlapping. Let M’ = M[u « Q,u € MR(M)]. Note that
term(M’) = FALSE by MR(M) # 0. So NV-sequentiality of F ensures that some
occurrence u in MR (M) is an index of term in M’ (i.e., u € I;(M')). By Lemma 4.2(b),
w is also an index of nf in M’, so that « is a needed redex of M for the normal form
by Definition 3.5. Let M %5 N be the call-by-need reduction. If N is reducible, i.c.,
MR(N) # 0, then we repeat the above procedure for N (instead of M) until we obtain
the normal form. As was explained in §3, it is shown in [8] that if nf 5 (M) = TRUE, then
every call-by-need reduction sequence from M is finite-terminating and eventually leads
to the normal form. Thus, using an algorithm for deciding the above term I-problem,
we can obtain a redex selection algorithm that gives a reduction sequence from a term
to the normal form whenever the term can reduce to the normal form.

To obtain an algorithm for deciding the term I-problem, we need some preliminar-
ies. The following definition is given in [8].

DEFINITION 5.1[8]. For Q-terms M, N € Tq, M and N are said to be compatible,
written M 1 N, if and only if there exists an Q-term @ such that M < Q and N < Q.
We write M T+ Nif M T N and M # Q.

DEFINITION 5.2 [8]. The least upper bound of two compatible -terms M and N,
written M U N, is defined as follows:

QUM =MuQ=M

(fMy---Mp)U(fNy---Np) = f(MyUNy,- -+, M, UN,),where f € FUX. Note that
if M T N,then M UN isdefinedand M < MUNand N < M UN.

122 MICHIO OYAMAGUCHI

We now define a new kind of rewrite rules associated with a TRS E as follows.

DEFINITION 5.3. For Q-terms M,N € Tq,M —, N if and only if M/u T+ aq
and N = M[u < fq] for some u € O(M),ac — B € E. We call this reduction an
w-reduction, and we call M/u an w-redex.

Note. The reduction —,, in [8] is the same as that of Definition 5.3., except that Q
is substituted for SBq.

Note. Let M be an Q-normal form. Then there isno redexo(c) in M,wherea € Lg
and o : X — T, but M may have an w-redex, i.e., M/u T+ agq for some u € O(M) and
a € Lg.

We first explain a relationship between this new reduction —,, and —, (defined
in §4). Using this relationship, we will show that the term I-problem reduces to the
reachability problem for quasi-ground TRSs, which is shown to be decidable in [4], [15],
[16].

LEMMA 5.1. (a) Let M —,, Bq where M T+ aq and oo — 3 € E. Then there exists
M' > M such that M' —, Q forany Q > Bq.

(b) Let M —p,, M' and N < M where N,M,M' € Tq. Then either N < M’ or
there exists N' € Tq such that N —,, N’ and N' < M'. (This implies that AN’ such that
N —* N'and N' < M'.)

Proof. (a) The proof is obvious. (b) By M —,, M’ we have M/u > aq and M' =
M[u — Q] for some u € O(M),a — 8 € E, and Q > (. We first consider the case
where there exists v € O(N) such that v < w and N/v = Q. In this case M[v — Q] >
N[v « Q] = N holds, so that M’ = M[v « M'/v] > N holds, as claimed. Next
consider the case where there exists no v € O(N) such that v < wand N/v = Q. In this
case, by M > N we have

3) u € O(N) A Occ(M,u) = Occ(N,u) # Q.

Since M/u > aq and M/u > N/u, we have N/u | aq, so that N/u T+ agq by (3). Thus
N/u —,, Bq by the definition of —,,. Let N’ = N[u < fq]. Obviously, N —, N’ and
N’ < M’ hold, since M’ = M[u « Q] > M[u «— Bq] > N[u < Ba] = N'. 0

Using this relationship between —,, and —,,, we will first give a characterization of
I,(M), where M is an Q-term. That is, we will prove Lemma 5.3, which says that for an
Q-term M € T — {Q} an occurrence u € O(M) (where M/u = Q) is no index of term,
i.e., u & I;(M) if and only if there exist v € O(M), where v < u, and N € T, such that
(M[u < z])/v —=F N and N T+ aq for some o € Lg, where z is a variable and L is
the set of left-hand sides of E. By using this characterization the term I-problem will be
shown to be decidable. For this purpose we will need some definitions and lemmas.

DEFINITION 5.4. For Q-terms M’, M and an occurrence u € O(M'),if M' > M A
M’ Ju = QA term(M’) = TRUE, then we say that M’ witnesses u ¢ I;(M).

The following technical lemma comprises the if part of Lemma 5.3.

LEMMA 5.2. Let M € Tg, and let uw € O(M), where M /u = Q. Let M[u «— z] -5 N
and N 1+ agq, where x is a variable and a € Lg. Then u & I,(M).

Proof. Let My = M[u « z] and M; —k N for some k > 0, where N T+ aq. We
will prove this lemma by induction on k.

Basis: k = 0. In this case M; = N T+ agq. Let

(4) Q= M, Uaq.

Then Q/u = z holds by M; /u = z. Moreover, note that aq contains no variable, so
that by (4), 3u’ < u such that aq/u’ = Q. Thus we have

(5) Qlu — Q] > aq.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 123

We now show that Q[u «— Q] witnesses u & I;(M), i.e., (i) Qu — Q] > M, (ii) Qu —
Q]/u = Q, and (iii) term(Q[u — 2]) = TRUE. Obviously, (ii) holds. Since Q[u «— Q] >
M;[u — Q] = M holds by (4), (i) holds. It remains to show (iii). By (5) the definition
of —,, ensures that Q[u — Q] —p, N’ for any N’ > (g, where o — 8 € E. Thus
term(Q[u <]) = TRUE, i.e., (iii) holds, as claimed.

Induction step: k > 0. Let M} = M[u « z] —, My = (M[u « z|)[v « Bq] —Fk1
N, where

My« z]/v 1+ &g forsomev € O(M[u+«—z])anda — B € E.
Let
(6) Q = M[u « z]/vUagq.

There are two subcases: (a) u|v and (b) v < u. Note that u < v is impossible by M[u —
z)/u =z.

Case (a): u|v. Note that My = (M[v — fql])[u — «] and M —k~1 N. So the
induction hypothesis ensures that there exists), witnessing u & I;(M[v «— Bq]), i.e.,

(7) Ql > M['U — BQ] A Ql/u =QA tCM(Ql) = TRUE.

Using (6) and (7), we can show that Q;[v « Q] witnesses u ¢ I;(M) for Q in (6), i.e.,
(1) Qi[v < Q] > M, (i) Q1[v — Q]/u = Q, and (iii) term(Q1[v — Q]) = TRUE.
Note that Q > M[u « z]/v = M/v by (6) and ulv, so that (i) holds, since Q; >
My « Bq] > M[v « Q] by (7). Since Q1[v « Q]/u = Q1/u = Q by (7), (ii) holds.
It remains to show (iii). Note that Q;/v > Bq holds by (7) and Q > aq holds by
(6), where @ — € E. So the definition of —,, ensures that Q —,, Q;/v. Thus
Q1[v — Q] —nv Q1[v «— Q1/v] = Q1 holds. Since term(Q;) = TRUE by (7), it follows
that term(Q; [v — @]) = TRUE, i.e., (iii) holds, as claimed.

Case (b): v < u. In this case M[u «— z|/v = (M/v)[v' — z], where vu’ = u. By
M[u « z|/v T+ agq, the proof of the basis case of k = 0 ensures that there exists Q’
witnessing v’ ¢ I,(M/v), i.e.,

(8) Q >M/vAQ /u = QA term(Q’) = TRUE.

Obviously, there exists a term My in T such that My > M. Let M’ = My[v — Q’]. Then
we can prove that M’ witnesses u ¢ I;(M), ie., (i) M’ > M, (ii)) M’ /u = Q, and (iii)
term(M’) = TRUE. Obviously, (i) holds, since M’ = Mp[v «— Q'] > Mv — Q'] > M
by (8), and (ii) holds, since M’'/u = Q'/u' = Q by (8). Moreover, since My € T
and term(Q’) = TRUE by (8), (iii) holds, that is , term(M’) = term(Mp[v «— Q']) =
TRUE. 0

We are now ready to prove the main lemma in this section.

LEMMA 5.3. Let M be an Q-term, and let u € O(M), where M/u = Q. Then
u ¢ I;(M) if and only if there exist v € O(M), where v < u, and N € Tgq satisfying
the following condition:

(9) Mu«—z]/v—-, N and N 1+ aq forsomea € Lg where z is a variable.

Proof: if part. Note that M[u — z]/v = (M/v)[v' « z], where u = vu’. So by
Lemma 5.2 there exists M’ € Ty, witnessing v’ ¢ I;(M/v), i.e.,

(10) M >M/vAM /v =QA term(M') = TRUE.

124 MICHIO OYAMAGUCHI

It follows that there exists Q € Tq such that Q@ witnesses u ¢ I;(M), because, for ex-
ample, we can take My[v — M’'] as @), where M is a term in 7" such that My > M.
(Note that Q = My[v — M'] > M,Q/u = M' /v’ = Q, and term(Q) = TRUE by (10).)
Hence u ¢ I,(M).

Proof: only-if part. Since u & I,(M), there exists Q € T such that

(11) Q>MAQ/u=QA term(Q) = TRUE.

So there exists a reduction sequence

u Up—
7:Q=Q1 _];nv Q2 u_z)nv _’)lnv an

where @, € T and u; is the redex occurrence of @Q; —ny Qir1,1 < i < n. In this
reduction sequence ~ note that there exists u;,1 < ¢ < n, such that u; < u, since
Q/u=Qand Q, € T. Let j(1 < j < n) be the smallest number satisfying u; < u. Let
v = u;, and let v’ satisfy vu’ = u. Note that

(12) Q/v —ny Qi/vAQj/v > ag

for some o € Lg and that occurrence v’ is safe for this reduction Q/v —y, Q;/v, so
that Q;/vu’ = Q. Let Q/v = (Q/v)[v' «— z] and Q; /v = (Q;/v)[u/ « z]. Then

(13) Q/v—iy Qj/v and Q;/v>aq,
since Q;/v > Q,;/v > agq by (12). Note that by (11)
(14) Q/v=(Q/v)' — 2] > (M/v)[u' «] = M[u — a]/v.

We can now prove that condition (9) holds, i.e., the only-if part. Since (13) and (14)
hold, by repeatedly invoking Lemma 5.1(b) we have

(15) My « z]/v -5 N1 AN; < Q;/v for some Nj.

By (13) and (15), N1 1 agq holds. So if N; # , then N; 1+ agq holds, so that condition
(9) holds. If N; = Q, then by M[u « z]/v # Q there exists R € T such that M[u —
z]/v =% R —, N1 = Qand R # Q. Obviously, R T+ ag, for some o’ € Lg. (In this
case o' — (' € E and 8f, = Q for some 3'.) In either case condition (9) holds. a
The following lemma is a direct consequence of Lemma 5.3.
LEMMA 5.4. Let M be an Q-term, where M #), and let u € O(M) where M /u =).
Then u & I,(M) if and only if there exist v € O(M), where v < u, and (3 € Rg such that

(Mu — z])/v =, Ba,

where x is a variable.

Proof. The only-if part obviously holds by Lemma 5.3. So consider the if part. Let
v : Mu « z]/v =% Baq. Let v’ satisfy vu’ = u. Then, since 8 does not contain z,
some v; € O(M[u < z]/v) such that v; < u’ must be an w-redex occurrence in . Thus
for such a v;

Mu « z]/vv; -2 N and N 1+ aq

for some N € T and @ € Lg. Hence by Lemma 5.3 u ¢ I;(M) holds. 0

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 125

We have shown that the condition of Lemma 5.4 is an “if and only if” condition for
ensuring that a given occurrence is no index of term. Now we consider how to check
this condition. We will first construct a new set K (E) of rewrite rules from F such that
K(E) is a quasi-ground TRS, and we will show a close relationship between —,, and
— kK (g)- Next, using this relation, we will prove that in the condition of Lemma 5.4 —,
can be replaced by —>§\,() thatis, for M € Tq — {Q} an occurrence u € O(M) (where
M/u = Q) is no index of term, i.e., u & I;(M) if and only if there exists v € O(M),
where v < u, and 8 € Rg such that M{u — z]/v =% g, Ba. In other words, we will
show that the term I-problem is reducible to the reachability problem for quasi-ground
TRSs. We now define the quasi-ground system K (F) as follows.

DEFINITION 5.5. For a set E of rewrite rules we define a new set K (F) of rewrite
rules as follows:

K(E)={a—Ba|a—BeE}U{Q— N|N € sub(ag),a € Lg}.

Let — g (k) be a usual reduction, i.e., M —g(g) N if and only if M/u = o(c) and
N = M[u « o(B)] for some u € O(M),a — 8 € K(E),and o0 : X — To. We have
assumed that E is left-linear, so that K(F) is a quasi-ground system. We now show a
relationship between —,, and — g (z).

LEMMA 5.5. Let M —, M', where M, M' € Tq. Then M —>;((E) M’ holds.

Proof. By M —,, M’ there exist v € O(M) and a — 8 € E such that

M/v1+aq and M' = Mv« Bq].

By M /v 1+ agq let @ = M/vUagq. Note that for each u € Oq (M /v) (see Definition
3.3)if u € O(aq), then Q/u = ag/uholds and Q = M/v[u — ag/u,u € Oq(M/v) N
O(aq)] by definition of LI. Thus Q is obtained from M /v by replacing 2 at each occur-
rence u in Oq(M/v) by aq/u, where u € O(agq). Hence we have M/v —% g Q by
applying rewrite rules of form 2 — R, where R € sub(agq). Furthermore, Q — g (g) Ba
holds by Q > aq. Thus M —kE) M[v « Bq] = M’ holds. 0

LEMMA5.6. Let M — g (gy M' and N < M, where M, M', N € Tq. Then there exists
N' € Tq such that N -} N and N' < M'.

Proof. Let v be the redex occurrence of M — g gy M'. If M/v = , then a rule
of form @ — R is applied. In this case M < M’ holds, so that N < M < M’. Thus
this lemma holds if we choose N’ = N. So consider the case for which M/v # Q, that
is, M/v > agq for some & € Lg and M’ = M[v « fq], where « — 3 € E. For
N < M if there exists v/ € O(N) such that N/v' = Q and v’ < v, then, obviously,
N < Mv < Bq] = M’ holds by N < M. So this lemma holds if we choose N’ = N.

Consider the case for which there exists no v’ € O(N) such that v’ < vand N/v' =
Q. In this case, by N < M we have

(16) v € O(N) A Oce(N, v) = Occ(M, v) # €.

Since M/v > aq and M/v > N/v, we have N/v T aq, so that N/v T+ agq by (16).
Hence N/v —,, [Bq by the definition of —,,. So N —, N[v « Sq] holds. By N[v «—
Ba] < M[v « Bq] = M’ this lemma holds. O

LEMMA 5.7. Let M € Tq — {Q} and u € O(M), where M/u = Q. Then u ¢ I,(M)
if and only if there exist v € O(M), where v < u, and 3 € Rg such that

(Mu — z])/v =¥k (&) Ba

where x is a variable.

126 MICHIO OYAMAGUCHI

Proof. The only-if part obviously holds by Lemmas 5.4 and 5.5. So consider the if
part. Let M[u « z]/v —%(&) Ba- By Lemma 5.6 we have the following w-reduction
sequence

v : Mu«—z|/v—-) N forsome N < fq.

Let «’ satisfy vu’ = u. Note that N does not contain , since S does not contain z. So
some v; € O(M[u « z]/v), where v; < v/, must be a redex occurrence in +. Thus for
such a v

Mu — z]/vv; =, Q —y Ba and Q 1+ aq

for some Q € T, and @ — 3 € E. Hence by Lemma 5.4 we have u ¢ I,(M). 0

By Lemma 5.7 the term I-problem is reducible to the reachability problem for quasi-
ground systems, which has been shown to be decidable in [4], [15], [16]. Thus we have
the following theorem.

THEOREM 5.1. Itis decidable, for an Q-term M and an occurrence u € O(M), whether
w is an index of term in M, i.e, u € I;(M).

Next we discuss the time complexity of algorithms for deciding the term I-problem.
By Lemma 5.7, to decide whether v is an index of term in M we need the reachabil-
ity tests for at most |M| - ||Rg| pairs (M[u « z]/v,0q). Let A be an algorithm that
takes as input a quasi-ground system E; and two terms M, N and decide whether
M —7%, N. For example, as .A one can consider an algorithm in [4], [15], [16]. Any-
way, it will be natural to consider the input size of A as size(E;) + |M| + |N|, where
size(E;) = Za_,ﬂe g, lal + |B|. Let T4(n) be the time needed by algorithm A un-
der inputs whose size is n. (We consider T 4(n) as the worst-case time complexity.)
Let n = size(E), and let m = |M|. Then, for given u,» € O(M) and 8 € Rpg,
whether Mfu — z]/v —}) Ba can be checked in the order of time Ta(n? + m),

since size(K (E)) < n+n2. So the total time required to decide whether v is an index of
term in M is bounded by the order of time mn - T'4(n? +m). By the preceding arguments
we have the following theorem.

THEOREM 5.2. Let E be a left-linear system, and let M € Tq. Let n = size(E), and
let m = |M)|. Let A be an algorithm that solves the reachability problem for quasi-ground
systems and operates in time T 4(k) for inputs of size k. Then, using algorithm A, we can
decide whether a given occurrence u is an index of term in M in time mn - T4(n? + m).

Since reachability for quasi-ground systems can be checked in polynomial time (see
[4], [16]), we have the following corollary.

COROLLARY 5.1. The term I-problem can be decided in polynomial time.

Note. At each step of the call-by-need reduction sequence, we must find a needed
redex. Thus consecutive searches for finding needed redexes are made, and it is impor-
tant to consider how to reduce the total cost of computing needed redexes, that is, how
to use useful information obtained from the search of the previous step to efficiently find
a needed redex at each step. In this paper we did not consider this problem, so it will be
the next step following the work of this paper.

6. Decidability of NV-sequentiality. In this section we show that whether a left-
linear TRS FE is NV-sequential is decidable. For this purpose we need some lemmas
and definitions. The following three technical lemmas are used later. They state prop-
erties concerning indices of term.

LEMMA 6.1. Let M € Tq, and let u,v € O(M), where u|v. Then v € I;(M[u «—
Q]) =>vE It(M)

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 127

Proof. By the definition of indices of term, v € I;(M[u « €)]) if and only if (i)
Mu « Q]/v=Qand (ii) N > M[u — Q] and term(N) = TRUE imply N/v # Q. By
u|v and (i) we have M /v = Q. Note that N > M implies that N > M[u —], so that
by (ii) v € I:(M) holds o

LEMMA 6.2. Let M € Tq, and let w € O(M). If I.,(M) = 0, then either I.(M[u «—
Q) =0orue L,(Mu «— Q)).

Proof. Assume that I;(M) = @ and u ¢ I;(M[u «]). Then we can show that
L(Mu « 9]) = 0. Letv € O(M) such that M/v = Q and u|v. By I;(M) =
0,v ¢ I;(M) holds, so that v ¢ I;(M[u « €]) holds by Lemma 6.1. Thus for all
v € O(M[u « Q]) such that M[u « Q]/u' = Q we have v’ ¢ I,(M[u —]), so that
I,(M[u < Q]) = 0 holds. 0

LEMMA 6.3. If uv € I,(M), then v € I,(M/u).

Proof. To the contrary, we assume that v & I,(M/u). Then by Lemma 5.3 we have

Jw < vIQ € Toda € Lg
such that
(M/uly « z])/w = Q T+ aq.

By (M/ulv « z])/w = (M[uwv < z])/uw and Lemma 5.3 we have wv ¢ (M), a
contradiction. 0

Next we need the following definition.

DEFINITION 6.1. Let hg = Max{h(a)|a € Lg}, i.e,, hg is the maximal height of
left-hand sides of E. We omit the subscript E where confusion does not occur without
it.

The following lemma says that, for a given Q-term M, if some subterm M /v has an
index of term and some Q-term N’ satisfying N’ = M[v « Q] for some v > u also has
an index of term, then the existence of an index of term in M is ensured. That is, this
lemma shows a kind of transitivity result on the index of term and will be used to prove
the main theorem in this section, i.e., to obtain an upper bound of the least size | M|
satisfying I;(M) = 0 if such M in Q-normal form exists. (In [12] a result similar to this
lemma is called a partial transitivity result for index propagation.)

LEMMA 6.4. Let M be an Q-term, and let ubv € Oq(M), where |§| > hg. If ué €
I(M[ub — Q)) and 6v € I,(M/u), then ubv € I,(M).

Proof. To the contrary, we assume that uév ¢ I;(M). Then by Lemma 5.3

Jw < ubvdQ € Tq3a € Lg
such that
17) Mubv — z]/w -}, Q T+ aq.

Note that w < u must hold by év € I;(M/u) and Lemma 5.3 (see Fig. 1). Without loss of
generality we can assume that for every occurrence w’, where w < w’ < u,w’/w is safe
for the w-reduction sequence (17). Note that by év € I;(M/u), for every occurrence w”,
where u < w” < ubv, w” /w is also safe for sequence (17). Hence for a term M[ué — z]
we have

Mué — z]/w =), Qué/w « z].

128 MICHIO OYAMAGUCHI

M[udv <« x]/w Q

X

FIG. 1. w-reduction sequence M [ubv — z]/w —% Q.

Moreover, Q[ué/w — z] 1+ agq holds, since Q 1+ agq by (17) and |ué/w| > hg holds.
Hence ué ¢ I;(M[ud «—]) by Lemma 5.3, a contradiction. O

We also need the following functions, the use of which will be explained later.

DEFINITION 6.2. We define some functions on §2-term as follows: For M € T, and
n>0

(i) O(M),, = {u € O(M) | |u| = n},ie., O(M), is the set of occurrences of M with
size n.

(i)

Pref(M), = { Mu — Q,u€ OM),] if O(M)n # 0,

otherwise.

We call Pref(M),, the Q-prefix of M with height < n. Note that Pref(M),, < M.

(iii) Yield(M), = {Pref(N)n|M —} N}, where h = hg (see Definition 6.1), i.e.,
Yield(M)y, is the set of the Q-prefixes (with height < h) of Q-terms reachable from M
under —,.

(iv) Env(M, u)op, = {Pref(N)qn | 3y : M[u « Q] —% N such that u € O(M) is safe
for v}, where h = hg, i.e., Env(M, u)2p, is the set of the Q-prefixes (with height < 2h)
of Q-terms reachable from M[u —] by w-reduction sequences for which occurrence
u € O(M) is safe. Env(M, u)ap, is undefined if u ¢ O(M).

Example. Let M = f(c, f(Q,z)), where f € Fa,c € Fy,z € X. Then O(M); =
{1,2},0(M), = {21, 22}, and Pref(M); = f(Q,Q), Pref(M)2 = f(c, f(R,Q)).

Note. We can show that Yield and Env are computable functions, i.e., we can give
algorithms to compute Yield(M), and Env(M, u);, for a given Q-term M and u € O(M).
The proof is omitted because Theorem 6.1 does not need the proof of existence of such
algorithms, but simply upper bounds of || Yield(M),|| and ||Env(M, u)|| (which are ob-
vious).

Now we explain how to use the function Env. For this purpose we need the following
definition.

DEFINITION 6.3. Two Q-term M and N have the same environment concerning an
occurrence § (where § € Oq(M) N Oq(N)) if Env(M, 8)2n, = Env(N, 6)2p, where h =
hg.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 129

FiG. 2. M[6 — Q[v « z]]/u.

The following lemma says that if M and N have the same environment concerning
&, then for any Q-term Q if M[§ — Q] has an index év of term for some v € O(Q),
then N[§ «— Q)] has also 6v as an index of term. Thus replacement of M[§ — Q)] by
N[6 «— Q] is index preserving in the above sense. This property will be used to prove
the main theorem in this section, i.e., to obtain an upper bound of the least size | M|
satisfying I;(M) = 0 if such M in Q-normal form exists.

LEMMA 6.5. Let M, N € Tqand § € Oq(M)NOq(N), where |6| = h. Let M and N
have the same environment concerning 6. Then for any Q € Tq and v € Oq(Q)

dv € It(M[6 — Q)) if and only if bv € I,(N[§ — Q)).

Proof: if part. To the contrary, we assume that év ¢ I,(M[6 — Q]). By Lemma 5.3
Ju < 6vdP € Toda € Lg

such that
(18) M[§ = Qv — zll/u = P 1+ aq.
If u > §, then N[§ — Q[v « z]]/u =} P 1+ agq, so that §v & I,(N[6 — Q]) by Lemma
5.3, a contradiction.

So consider the case u < 4. Let §; satisfy u6; = 6 (see Fig. 2). Without loss of
generality we can assume that any w < §; is safe for the w-reduction sequence (18),
so that we can divide (18) into two subsequences, one of which is the subsequence with

w-redex occurrences > 6; and the other of which has w-redex occurrences disjoint from
51 .

(19) M[b — Qv z]l/ubs(= Qv — z]) = P/,
(20) M[§ — Q]/u -} P61 < Q).
Since M and N have the same environment concerning 6, by (20) we have

(21) N[§ — Q] = P!

130 MICHIO OYAMAGUCHI

for some P’ € T, where

(22) Pref(P’ /u)p, = Pref(P[6; — Q)»

and § is safe for this w-reduction sequence (21), so that P’/§ = Q holds. Thus by (21)
we have

(23) N[§ — Q)/u -} P'/u.

Now we combine the w-reduction sequences (23) and (19):

(24) N[§ — Qv «— all/u =, (P'/u)[61 — P/éy].
Note that Pref((P’/u)[61 <« P/61])r = Pref(P); holds by (22), so that
(P'/w)lb1 — P/6:] T+ o

holds by (18). Therefore, 6v & I;(N[6 «— Q]) by (24) and Lemma 5.3, which is a contra-
diction. 0

Proof: only-if part. This proof is the same as the above except that M and N are
interchanged. O

Now we give the last definitions needed in this section.

DEFINITION 6.4. For n > 0 we define T (n) and lg(n) as follows: To(n) = {M €
Tq | h(M) < n},ie., To(n) is the set of Q-terms of height < n. Ig(n) = Max{|M|| M €
Ta A h(M) < n},ie., Ig(n) is the maximal size of Q-terms of height < n.

DEFINITION 6.5. Let Iy, l1, ---, I5 be constants defined as follows: Let [=
Max{a(f)|f € F} (i.e., lo is the maximal arity of F), I, = I&,1, = ||272(P)|| (i.e., I2
is the cardinality of subsets of T (2h)), I3 = ||272() ||l = || Tq(h)|, and I5 = Max{| M|
| M € NFg A h(M) < h},where h = hg.

We are now ready to show the decidability of NV-sequentiality for left-linear TRSs.
The following theorem says that to decide whether a left-linear TRS F is NV-sequential,
we need to check, for only a finite number of 2-normal forms, whether there exist indices
of term. In other words, this theorem gives an upper bound of the least size | M| satisfying
I;(M) = if such an Q-term M in Q-normal form exists.

THEOREM 6.1. Let L = 1+ h+ 15+ 1y - la-l3 - ls. Then a left-linear TRS E is
NV-sequential if and only if for all Q-normal form M in T such that |M| < lg(L) and
M ¢ T,I;(M) # 0 holds.

Proof: only-if part. If M is in Q-normal form and M ¢ T, then term(M) = FALSE,
so that I, (M) # @ by NV-sequentiality of E.

Proof: if part. To the contrary, we assume that there exists an Q-normal form M
such that |[M| > lg(L),M ¢ T, and I;(M) = 0. Here we assume that M is such an Q-
term with the least size |M|. By |M| > lg(L) Definition 6.4 of lg(L) ensures h(M) > L,
so that 3v € O(M), such that |v| > L. Let

(25) v =wvyv, Where |vg|=1[5+1.

Note that |’Ul| >h+l-ly-l3-14.
Our goal is to show that there exists an 2-normal form M’ such that |M'| < |M|,
M' ¢ T, and I(M'’) = 0. Thus this contradicts the minimality of the size of M. The

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 131

crucial point in this argument is how to construct such an Q-term M’. We will show that
M’ = M[up «— M/u,] for some ug, u; € O(M) satisfies the above required conditions:

OM T,

(ii) 1M/ < |M],

(iii) M’ is in Q-normal form,

@iv) (M) = 0.

The following assertion shows that if we choose u; so that u; < v; may hold for v,
in (25), then M/u; ¢ T, so that M’ = M[ug — M /u,] satisfies condition (i).

ASSERTION 6.1. M /v; contains Q.

Proof. To the contrary, we assume that M /v, € T. Note that M/v; is in normal
form. By (25), v € O(M/v,) and |vz| > ls = Max{|M|| M € NFg A h(M) < hg}, so
that we have h(M/v,) > hg. Let

N = (M/v1)[u — z,u € O(M/v1)n],

where € X. Then clearly N eNFg by M /v; € NFg. Note that

(26) |IN| < |M/v1| and Pref(N), = Pref(M/vi)n,.
Let
Ml = M[’Ul — N]

Then |M;| < |M] holds by (26). Note that My ¢ T'by M ¢ T and the assumption
M/v;, € T, and M, is in Q-normal form, since M is in Q-normal form and replacement of
M /v, by N does not produce any redex by (26). Moreover, we can show that I;(M;) = 0,
so that this contradicts the minimality of the size of M.

We now show that I;(M;) = 0. By I;(M) = 0, for every u € Oq(M), we have
u & I;(M), so that by Lemma 5.3

' <udQ € ToJda € Lg

such that

(27) M[u « z]/u' =% Q 1+ agq.

Note that u|v; holds by M/v; € T and M/u = Q. There are two cases: (i) u’|v; and
(ii) v’ < v;. In case (i) obviously u ¢ I;(M;) by Lemma 5.3, so consider case (ii). Let
6 satisfy u'6 = v;. Without loss of generality we can assume that every occurrence &’
satisfying ¢’ < § and v'6’ < w is safe for the w-reduction sequence (27) (see Fig. 3). We
want to show that

(28) Mifu—z]/u (= Mu— z,v1 — NJ/u') > Q' T+ aq
for some Q' € Tg, so that u ¢ I,(M,). If any § < ¢ is safe for the w-reduction se-

quence (27), then M /v, —7, @Q/6 by the definition of safe, and since M/v; € NFg by
the assumption, we have

M/'Ul = Q/6

132 MICHIO OYAMAGUCHI

M[u <« x]/u'

FIG. 3. w-reduction sequence M[u — z|/u’ —% Q.

By replacing M /v; with N, we have the following sequence from (27):
M[u « z,v; «— N]/u' -} Q[6 — N].

(Note that v; /o’ = §.) Then Q[6 — N] 1+ agq holds, since Pref(NN),, = Pref(M/vi)n,
by (26) and Q 1+ agq by (27), where Q /6 = M /v;. Hence we have the above w-reduction
sequence (28), where Q' = Q[6 — N]. Otherwise, i.e., if some u” satisfying that v” <
6 and u'v”|u is an w-redex occurrence in (27), then Pref(M/v1)n, = Pref(N),, also
ensures the existence of the above w-reduction sequence (28). (In this case Q' = Q
holds.) Hence u & I;(M;). Thus I;(M;) = 0, as claimed. O

Now we explain how to choose occurrences ug and u; in O(M) to construct M’ =
M{up — M/u,]. We choose u; satisfying u; < vy, so that M’ ¢ T by Assertion 6.1.

For each occurrence u such that v < v; and |u| < |v1| — h we define tuple(u) as
follows:

tuple(u) = (6, env, yield, pref) € N x 2T(h) 5 oTa(h) T (p),

where 6 satisfies |6| = h and ué < vy, env = Env(M/u, §)ap, yield = Yield(M /ub), pref
= Pref(M/u6);, and here h = hg. Note that the number of different tuples is bounded
by l; - Iy - I3 - 4 (see Definition 6.5).

By !’Ull > h+1; -l -l - 14 there exist

(29) u,u’ € O(M) suchthatu < u' <wvy,|u'| < |vi| — h, and tuple(u) = tuple(u’).
Let
(30) tuple(u) = (8, env, yield, pref) = tuple(u’), up = ué, and u; = u'8.

Note that v'§ < vy, so that M’ = M[uo «— M/u4] satisfies condition (i), M’ ¢ T, by
Assertion 6.1. Our goal is to show the remaining three conditions.

Condition (ii), |M’'| < |M]|, holds, since by (29) u < «/, so that [M/ug| > |M/u|
follows.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 133

Condition (iii), that M’ is in Q-normal form, also holds. Since M is in Q2-normal
form, M /u, is also in 2-normal form. Moreover, since Pref(M /ug)n, = Pref(M/u1)p,
= pref holds by (30), M[up < M/ui](= M’) has no redex. Thus it remains to show
condition (iv).

Proof of (iv). I;(M') = (. We will show that any occurrence v in Oq(M’) is not an
index of term so that I;(M’) = 0.

Let v € Oq(M’). Then there are two cases: (a) v|up and (b) up < v.

Case (a). v|up. In this case v € Oq(M) holds by M’ = M[ug «— M/u;]. Since
v & I;(M), Lemma 5.3 ensures that

(31) Jw < v3IQ € ToJa € Lk such that M[v « z]/w -, Q T+ aq.

There are two subcases: (al) w|uo and (a2) w < uo.

Case (al). w|up. In this case M[v — z]/w is a subterm of M'[v «], so that
v & I;(M') by Lemma 5.3.

Case (a2). w < ug. This proof is a slight generalization of that of Assertion 6.1. Let
b satisfy wéy = ug. Without loss of generality, we can assume that every occurrence &’
satisfying §' < 6o and wé’ < v is safe for (31). We want to show that

(32) M'[v— z]/w =, @ T+ ag
for some Q' € Tq, so that v & I,(M'). If any §' < & is safe for (31), then
M/uo —, Q/bo
holds. Since Yield(M/ug)n, = Yield(M/u1)n, = yield by (30), we have
(33) M/u; —% P and Pref(P)s, = Pref(Q/80)ng
for some P € Tg,. Hence by (33) and (31) we have
M[v « z,up — M/u1]/w -, Q[éo — P).

(Note that ug/w = &.) Then Q[6p — P] T+ agq holds, since @ T+ aq by (31)
and Pref(P);, = Pref(Q/6o)rn; by (33). Hence we have the sequence (32), where
Q' = Q6o — P). Otherwise, i.e., if some &' satisfying §’ < §p and wé’|v is an w-redex
occurrence in (31), then Yield(M/uo)n, = Yield(M/u1)n; (by (30)) also ensures the
existence of the above w-reduction sequence (32). (In this case Q' = @ holds.) Hence
v & I;(M'), as claimed.

Case (b). up < v. Let v’ satisfy v = ugv’. Note that

(34) v' € Og(M/uy)

by M’ /ug = M/uy. Thus u1v' € Oq(M) holds. We can show the following assertion
that v’ ¢ I;(M/u'). Note that u; = «’6 by (30). By using this result it will be shown that
v ¢ It(M I).

ASSERTION 6.2. 6v' & I,(M/u').

Proof. To the contrary, we assume that v’ € I;(M/u’). Then we can show that

(35) W6 ¢ L(Mu'é — 9)),

because if u'é € I,(M[u'6 — Q]) and §v' € I;(M/u’), then I,(M) # @ would hold by
Lemma 6.4, a contradiction. However, since Lemma 6.2 says that if I;(M) = 0, then
either I,(M[u'§ — Q]) =@ oru'é € I,(M[u'§ — Q]), and (35) ensures that

(36) I (M6 — Q]) = 0.

134 MICHIO OYAMAGUCHI

Since |[M[u'§ — Q]| < |M| and M[u'§ « Q] is in Q-normal form, (36) contradicts the
minimality of size of M. Thus Assertion 6.2 holds. a
Using Assertion 6.2 §v' ¢ I;(M/u’), we can show that

37) &' & Li(M' [u).

It follows that uév’(= v) & I;(M') by Lemma 6.3, as claimed.
Thus it remains only to show (37). We first note that

(38) Env(M/u,6)2n = Env(M/u/,8)on = env
holds by (30). By Definition 6.3 (iv) of Env,
Env(M/u, 8)2n = Env(M/u[§ «], 8)2n,

EnV(M/u',(S)gh = Env(M/u’[cS — Q],(s)gh.

Thus Env(M/u[§ — Q], 6)2n, = Env(M/u/[6 — €, 6)21 holds by (38), i.e., M/u[é — Q]
and M/u'[6 « Q] have the same environment concerning §. Hence by Lemma 6.5 we
have

(39) §v" € I,(M/u[§ — Q]) if and only if §v” € I,(M/u/[§ — Q])

for any Q € T and v” € Oq(Q). Let Q = M/u'§(= M/u,), and let v/ = ¢'. Note that
v’ € Oq(M/u,) by (34). Then (39) is

(40) &' € I,(M/u[6 — M/u,]) if and only if 6v’ € I(M/u'[6 — M/u1]).

Since M/u/[6 «— M/ui] = M/u’ and §v' ¢ I;(M/u') by Assertion 6.2, the right-hand
side of (40) is false, so that the left-hand side is false: §v’ & I;(M/u[6 — M/u1)), ie.,
v & Ii(M' /u) by M/u[6 — M/u1] = M[ué «— M/u1]/u = M’'/u. Thus (37) holds, as
claimed. O

By the above arguments we have shown that any v in Oq (M’) is not an index of term,
so that I;(M') = 0. O

Hence M’ satisfies all the conditions (i)-(iv), so that we have a contradiction. Thus
this theorem holds. a

Note. In the proof of Theorem 6.1 we have chosen u and v’ satisfying tuple(u) = (6,
env, yield, pref) = tuple(u’). The sameness of the first, second, and third components
(i.e., 8, env, and yield) was used in the proof of (iv), and that of the fourth component
pref was used in the proof of (iii). Note that the use of the same §’s was necessary to use
Lemma 6.5.

Note. Our concern was mainly to give a simplified proof of the decidability of NV-
sequentiality. It remains open whether there exists an efficient algorithm to decide NV-
sequentiality.

By Theorem 5.1 it is decidable whether I;(M) = 0 for Q-normal form M € Tq.
Thus by Theorem 6.1 we have the following theorem.

THEOREM 6.2. It is decidable whether a left-linear TRS E is NV-sequential.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 135

Acknowledgments. The author is grateful to the referees for their critical reading
of the earlier versions of this paper and their many subsequent helpful comments. He
is also grateful to M. Broy, H. Hussman, P. Padawitz, and M. Wirsing for their helpful
comments, and to N. Honda, T. Fukumura, and the members of the theoretical computer
science group Jodankai in the Tokai area for their earnest discussions and advice.

REFERENCES

[1] H.P. BARENDREGT, Functional programming and lambda calculus, in Handbook of Theoretical Computer
Science, Vol. B, J. van Leeuwen, ed., North-Holland, Amsterdam, 1990, pp. 321-363.
[2] , The Lambda Calculus, Its Syntax and Semantics, 2nd ed., North-Holland, Amsterdam, 1984.
[3] J. A. BERGSTRA AND J. W. KLOP, Conditional rewrite rules: confluence and termination, J. Comput. System
Sci., 32 (1986), pp. 323-362.
[4] M. DAUCHET, S. TisoN, T. HEUILLARD, AND P. LESCANNE, Decidability of the confluence of finite ground
term rewriting systems and of other related term rewriting systems, Inform. and Comput., 88 (1990), pp.
187-201.
[5] C. M. HOFFMAN AND M. J. O’DONNELL, An interpreter generator using tree pattern matching, in Proc. 6th
ACM Symposium on the Principles of Programming Languages, 1979, pp. 169-179.
[6] , Implementation of an interpreter for abstract equations, in Proc. 11th ACM Symposium on the
Principles of Programming Languages, 1984, pp. 111-121.
[71 G. HUET, Confluent reductions: abstract properties and applications to term rewriting systems, J. Assoc.
Comput. Mach., 27 (1980), pp. 797-821.
[8] G. HUET AND J.-J. LEVY, Call by need computations in non-ambiguous linear term rewriting systems, Rap-
port de Recherche No. 359, Institut National de Recherche en Informatique et en Automatique,
Le Chesney, France, 1979; Computations in orthogonal rewriting systems 1 and 11, in Computational
Logic: Essays in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin, eds., MIT Press, Cambridge,
MA, 1991, pp. 395-443.
[9] G. Huer AND C. OPPEN, Equations and rewrite rules: a survey, in Formal Language Theory: Perspectives
and Open Problems, R. V. Book, ed., Academic Press, New York, 1980, pp. 349-393.
[10] G.KABNAND D. B. MACQUEEN, Coroutines and networks of parallel processes, in International Federation
of Information Processing Societies 77, B. Gilichrist, ed., North-Holland, Amsterdam, 1977, pp. 993—
998.
[11] G.KaHNAND G. PLOTKIN, Domaines concrets, Rapport Laboria No. 336, Institut de Recherche en Infor-
matique et en Automatique, Le Chesney, France, 1978.
[12] J. W. KLOP AND A. MIDDELDORP, Sequentiality in orthogonal term rewriting systems, J. Symbolic Comput.,
12 (1991), pp. 161-195.
[13] D. KNUTH AND P. BENDIX, Simple word problems in universal algebras, in Computational Problems in
Abstract Algebra, J. Leech, ed., Pergamon Press, Elmsford, NY, 1970, pp. 263-297.
[14] M. J. O’'DONNELL, Computing in systems described by equations, Lecture Notes in Computer Science 58,
Springer-Verlag, Berlin, New York, 1977.
[15] M. OYAMAGUCHI, The reachability problem for quasi-ground term rewriting systems, J. Inform. Process., 9
(1986), pp. 232-236.

[16] , On the word problem for right-ground term-rewriting systems, Trans. IEICE Japan E, 73 (1990), pp.
718-723.
[17] , Sufficient sequentiality: a decidable condition for call-by-need computations in term rewriting systems,

Tech. Report, Mie University, Tsu-shi, Japan, 1986.

[18] J. E. StOY, Denotational Semantics, the Scott-Strachey Approach to Programming Languages, MIT Press,
Cambridge, MA, 1977.

[19] Y. Suciyama, 1. Suzuki, K. TANIGUCHI, AND T. KasaMmi, Efficient execution in a class of term rewriting
systems, Trans. IECE Japan, J65-D (1982), pp. 858-865.

[20] S. THATTE, A refinement of strong sequentiality for term rewriting with constructors, Inform. and Comput.,
72 (1987), pp. 46-65.

[21] D. A. TURNER, A new implementation technique for applicative languages, Software Practice and Experi-
ence, 9 (1979), pp. 31-49.

[22] J. VUILLEMIN, Correct and optimal implementation of recursion in a simple programming language, J. Com-
put. System Sci. 9 (1974), pp. 332-354.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 136-146, February 1993 011

ASPACE(o(log log n)) IS REGULAR*
KAZUO IWAMA'

Abstract. One of the common results of resource bounded Turing machines is the log log n lower bound
for the space usage of deterministic and nondeterministic Turing machines that accept nonregular languages.
In this paper this result is extended to alternating Turing machines: It is proved that if f(n) = o(loglogn),
then f(n)-space-bounded (off-line) alternating Turing machines can accept only regular sets. The problem
has been open for a decade.

Key words. space lower bounds, alternating Turing machines

AMS(MOS) subject classifications. 68Q05, 68Q15, 68Q68

1. Introduction. One of the common results regarding resource-bounded Turing
machines (TMs) [5] is that there is a nontrivial, tight lower bound, loglogn, for the
space usage of both deterministic TMs (DTMs) and nondeterministic TMs (NTM:s) that
accept nonregular languages. In this paper we extend this result to alternating TMs
(ATMs); we prove that if f(n) = o(loglogn), then f(n)-space-bounded (off-line) ATMs
can accept only regular sets. The problem was first considered by Sudborough in [11],
and the loglogn lower bound was proved under the strong definition of space bounds
(see below). In [1] the loglog log n lower bound is proved under the standard definition,
and the log log n bound for on-line ATMs is also proved. The log log n bound for off-line
ATMs was once claimed to be proved [3], but the claim was later corrected [4]. Thus the
problem was still open.

There are two distinct definitions of space complexity measurement for nondeter-
ministic (and alternating) space-bounded TMs: (i) All computations must satisfy the
space bound (strong definition). (ii) It is enough that at least one accepting computa-
tion on each acceptable string satisfies the bound (standard definition). For small space
bounds, such as log log n, the distinction is important because we cannot use the common
technique of marking off the work tape in advance and then finishing the computation
as rejection if the head goes outside the bound. Definition (ii) is more reasonable ac-
cording to the principle of nondeterminism (existence of a single good computation is
enough) and is clearly more standard (used in most papers, e.g., [2], [7], [9])-

It should be noted that there are a number of facts that might mislead us into feeling
that the lower bound that we are currently interested in can differ between NTMs and
ATMs:

(1) There exists a (regular) language for which m states by deterministic finite au-
tomata (DFAs), log m states by nondeterministic finite automata (NFAs) and log log m
states by alternating finite automata (AFAs) are necessary and sufficient [2]. There also
exists a (nonregular) language for which log n space by DTMs and log log n space (stan-
dard definition) by NTMs are necessary and sufficient (see §2). Can the latter statement
be extended to encompass log log log n space by ATMs by the analogy of finite automata?

(2) Not surprisingly, log log n space-bounded (standard definition) ATMs are more
powerful than the same space-bounded NTMs; this is demonstrated by using a rather
simple language in the Appendix.

(3) Using a language similar to that of fact (2), we can also show that log log n space-
bounded (standard definition) off-line ATMs are more powerful than their on-line coun-

*Received by the editors August 14, 1991; accepted for publication (in revised form) January 8, 1992.
tDepartment of Computer Science and Communication Engineering, Kyushu University, Hakozaki,
Fukuoka 812, Japan (iwama@csce.kyushu-u.ac. jp).

136

ASPACE(o(log log n)) IS REGULAR 137

FiG. 1. Computation subtrees.

terparts (see Appendix). Thus we cannot rule out the possible reduction of the known
log log n lower bound for on-line ATMs.

(4) There does exist a complexity measure whose lower bound for NTMs is different
from that for ATMs. In [6] it is shown that the (tight) lower bound of the reverse (or
cross) complexity of single-read-write-tape TMs is log log n for NTMs but log log logn
for ATMs of even a single alternation and becomes as small as log* n for general ATMs.

In this paper TMs are those machines having a read-only input tape and a read—write
work tape. They are said to be on-line if the input head can move only from left to right
(and can stay there) and off-line if it can move in both directions. We will call a triple
(w, h, s) of the nonblank portion w of the work tape, the work-tape head position h, and
the state s of the finite control a global state. A configuration consists of the input string,
the input head position, and the global state. A computation (tree) P for an input z is
a tree of the following structure: (i) The root is associated with the initial configuration
denoted always by I;,;;. (ii) If a vertex v is associated with an existential configuration o
(i.e., its state is existential), then v has exactly one child that is one of the possible succes-
sors of ¢. (iii) If a vertex v is a universal configuration, then v has the children that are
the set of all possible successors of o. The computation P is said to be k-space bounded
if at any vertex of P at most k work-tape cells are used. P is said to be accepting if it is
finite and all of its leaves are associated with accepting configurations. (We assume that
TMs never write the blank symbol on the work tape. Then, since the length of the non-
blank portion increases monotonically, “at any vertex of P” in the above definition can
be replaced by “at any leaf of P” if P is an accepting computation.) An ATM M is called
f(n)-space bounded if for any input string of length n that is accepted by M there is an
f(n)-space-bounded accepting computation. Besides the (complete) computation tree
described above, we often consider a computation subtree; its root is associated with an
arbitrary (not necessarily initial) configuration, and all of its paths end (are cut forcibly)
by some condition, e.g., when the input head crosses some boundary of the tape (see Fig.
1). All TMs described in this paper accept their inputs when the input heads are at the
right end.

2. Basic tools. This section demonstrates two fundamental techniques that are im-
portant in proving the main theorem. Before that proof, we first take a look at how the
strong and standard definitions are different in our current situation.

PROPOSITION 1 [11]. If an ATM uses an unbounded number of work-tape cells under
the strong definition of space usage, then it must use at least clog logn cells infinitely often
for some c > 0.

138 KAZUO IWAMA

Proof. Let M be an ATM. We can construct the NTM M’ from M by replacing each
universal state of M by an existential state with the same set of choices. Then, if M has
a computation path @ (not the whole tree defined previously but a single path from the
root to some leaf) that uses & work-tape cells, then M’ has (the same) computation path
Q that uses k work-tape cells for the same input. This concludes the proof since the
statement is known to be true for NTMs [10]. O

Now let us return to the standard definition. We can no longer claim this proposition.
First of all, we do not have to count the space usage if the above computation path @
is not accepting. Even if it is accepting (i.e., it ends with an accepting configuration),
any computation tree of M including) may not be accepting. In other words, “the same
input” above, which must be accepted by the NTM M’, is not necessarily accepted by the
ATM M, and we again do not have to consider such an input when measuring the space
usage of M. Furthermore, if there is an accepting computation tree of M including Q,
we still cannot rule out the existence of a better computation tree for the same input.

We shall next review the convenient tool to prove small resource bounds, generally
called cut-and-paste, by using the following well-known bounds for on-line TMs.

PROPOSITION 2. Let fi(n) = o(logn), i.e., sup(fi(n)/logn) = 0, and let fo(n) =
o(loglogn). Then any f,(n)-space-bounded on-line DTM or f5(n)-space-bounded on-line
NTM can accept only a regular set.

Proof. We shall show that if a g; (n)-space-bounded DTM M accepts a nonregular
language, then g, (n) > ¢ log n for an infinite number of n’s and for some fixed constant
c determined by M. Clearly, g;(n) is not bounded by any constant. Then one can see
that there exists an arbitrary large integer k for which there is a string v such that (i) v
is accepted by M, and (i) for all strings « that are accepted by M and are shorter than
v, there is a computation that uses less than k space. Intuitively, v is the shortest string
that needs k space.

Recall that we are now discussing on-line TMs. For strings z and y let ¢, denote M’s
global state (w, h, s) that M, on the input zy, is in when its input head crosses (only once)
the boundary between z and y (“;” indicates the boundary). Now select an arbitrary pair
of v and k mentioned above. If v is written as v = zyz (y # ¢), then t,,,, and t,,,, must
be different. (The reasoning is as follows: Suppose that t;,, = t5,;.. Then one can see
that (i) zz is also accepted and (ii) M also needs k space to accept zz since both zyz and
zz lead M to the same accepting configuration, which determines the space usage. That
contradicts the assumption that zyz is the shortest string that needs k space.) Note that
if the computation is k-space bounded, |w| < k at any boundary. Thus the number of all
different triples (w, h, s) is bounded by c¥ for a constant c;. In order that t,,,, # tey;.
for any two boundaries, c¥ > |zyz| = n or k > c3 logn for a constant c;.

The same argument may also be applied when M is an NTM by replacing ¢, with
T,y that is the set of all global states ¢ = (w, h, s) such that M can reach ¢ at the bound-
ary. Now suppose that T;,,, = T%,,.. Then we can claim that

(*) if xyz is accepted with k, but not less space, then
xz is also accepted with k, but not less, space.

(Note that (*) is equivalent to the statement that zyz is accepted with k space if and only
if zz is accepted with k space. Again, recall that the space usage of a computation path
is determined by that of its final configuration. If ¢;,;; = t; Yty S tyisan accepting
computation path with k space, then, since ¢, that appears in T,,,, on the above path
is also in Ty, tinit 2ty 5 tg is also such a path. Note that ¢; may differ from t,.

ASPACE(o(log log n)) IS REGULAR 139

Conversely, suppose that t;,;; — t5 = te is a path with k’ space, which means that ts is
in T;,,. Clearly, Ty,, coincides with Ty, and, since Ty, = Ty, by the assumption,
there must be ¢4 that constructs the path ¢;,;; Sta Dty D te, which clearly uses the
same space. That is enough to claim the statement (*).) A crucial point is that we can get
the same conclusion if the assumption Ty, = Ty, is relaxed to Ta’f;yz = Tfy;z, where
T, is the subset of T, such that |w| < k. Thus we can conclude that T%,,_ should differ
from Tfy;z for any y # e. Now a simple evaluation of the size of the power set is enough
to achieve the goal. 0

It turns out that these lower bounds are tight: Let bin () denote the string over 0 and
1 whose reverse is the binary representation of the integer i. For example, bin(6) = 011.
Now let

BIN = {fbin(0)fbin(1)f - - - fbin(n) | n = 0},

and let BIN = {0, 1,#}* — BIN. Then it is not difficult to see [5] that BIN is recognized by
a (log n)-space-bounded ((log log n)-space-bounded, respectively) on-line DTM (NTM,
respectively).

Now we must determine how we can apply the cut-and-paste method to ATMs. If
ATMs are on-line, we have the following answer.

PROPOSITION 3 [1]. Let f(n) = o(loglogn). Then any f(n)-space-bounded on-line
ATM M can recognize a regular set.

Proof. We could simply extend the above proof for NTMs by replacing a computa-
tion path with a set of computation paths. The idea is that at each boundary the machine
M is universally in a set S; of global states (corresponding to one computation tree) or
is universally in set Sz (another computation tree), and so on. Thus this extension would
force us to enumerate sets of sets of global states, or we would obtain only a log log log n
lower bound.

The following proof is considerably modified from [1] in order to prepare ourselves
for the main theorem. It should be noted that T, introduced in Proposition 2, depends
on z but not at all on y. To attain the same goal as before, we can develop a similar
construct that does not depend on z but does depend on y. Namely, we define Sy, as
the set of global states ¢, at the boundary between x and y, that is led to acceptance by y.
Then it is not difficult to see that S;.,, = Sg,,, implies that xyz is accepted if and only if
xzisalso. A difficulty is that the claim (*) on the space usage in the proof of Proposition 2
no longer holds for the following reason: Suppose that there is an accepting computation
path tinis = t1 > ty > t3. Since Sy, = Spy;z, there must be ¢y in S.,,. However,
there may not be a computation (sub)path ¢;,;; 5 to. (Note that S, , requires only that
the machine can go to an accepting configuration if we assume that it is in some global
state in Sy, at the boundary between z and yz.) There should exist the accepting path
tinit — t1 —> t4, but it may need less space than before.

With this problem in mind, we define S%,, as follows: Let (¢, j) be a pair of a global
state and an integer. Then S¥., contains all (¢, j)’s such that (i) j < k and (ii) if M isin ¢
at the boundary, then ¢ leads to acceptance while using j space but does not do so while
using j — 1 space or less (i.e., there is an accepting computation subtree of the described
space bound whose root is associated with the global state ¢ and the input head being on
the leftmost symbol of y). This introduction of pairs of a global state and space, unlike
the conventional only global states, is important, especially for proving the main theorem.

Let P be a computation subtree of M on input zy such that its root is Iy;; and all
paths end when the input head crosses the boundary between z and y. We also define

140 KAZUO IWAMA

SEC4.y(P) as the set of all global states that M, following P, is in when it crosses the
boundary. A key fact (whose proof is easy and is omitted) is that there is an accepting
computation tree of k-space bound for M on input zy if and only if there is this kind of
computation subtree P such that

SECzy(P) C {t|(t,) € Sz, }-

Now suppose that the ATM M accepts input zyz and uses k, but not less than k, space
and that S¥, . = S¥ . Then we can conclude by the following reasoning that (i) zz is
also accepted while using k space and (ii) that it is not accepted while using less than &
space: The assumption means that there is an accepting k-space-bounded computation
tree for xyz. By this and the preceding fact there is a computation subtree Py whose

root is Ijn;; and all of whose paths end at the boundary between z and yz such that
SECz;yz(PO) c {t | (t,j) € S;:c;yz}'

Note that S% . = Sk means S¥, , = Sk (because both Sk .

only 2), and therefore the computation subtree Py also satisfies

and Sk, depend on

SECq;.(Po) C {t|(t,4) € SE,}.

Again by the fact (“if” part), there is an accepting computation tree of k-space bound for
zz. Thus statement (i) is correct. As for (ii), we can similarly show that if zz is accepted
and uses less than k space, then zyz is also.

We are now ready to carry out the same enumeration as that of Proposition 2. The
number of all different (¢, j)’s such that ¢ = (w, k, s) and |w| < j < k is a bit larger than
before, but it is still bounded by c* for some constant c. 0

3. Main result. It should be noted that the weaker log log log n lower bound proved
in [1] can also be proved by modifying the transition matrix in [5] from 7 x 7 to 2" x 27.

THEOREM 1. Let f(n) = o(loglogn). Then any f(n) space-bounded off-line ATM
M can recognize a regular set.

Proof. With the boundary between strings x and y we associate S&, as before. This
time, according to the alternation from on-line to off-line, s;;;y is not a simple set but is
an array such as

S;:C;y = (S;:c,y(l)> S:’cc;y(z)’ Ty S:Icc;y(p))>

where the value p will be given later. We need a few more notations: Let P be a compu-
tation subtree whose root is associated with a global state ¢ and an input head position
7. In what follows we often focus our attention to some boundary, say, the boundary
between z and y of the input zy. If 7 is on the rightmost symbol of = (leftmost symbol
of y, respectively), then we say that P has root (t,z;y, L), where L stands for the left of
the boundary (respectively, (¢, z;y, R), where R stands for the right of the boundary).
CRS;,,(P) denotes how many times M’s input head, following P, crosses the boundary.
(The number of crosses can differ according to each path of P. We take the largest value
as CRS;,,(P).) SP(P) denotes the space P uses.

Now we define S, (i). Suppose that i is odd. Then S%,, (i) contains all the pairs
(t,7) of a global state ¢ and an integer j < k satisfying the following conditions: (i)
There is an accepting computation subtree P (see Fig. 2) such that P has root (¢, z;y, R),
CRSg,y(P) =i — 1, and SP(P) = j. (ii) There is no accepting computation subtree P
such that P has the same root (¢, z; y, R) and the same CRS,,,(P) = ¢ — 1 but for which

ASPACE(o(log log n)) IS REGULAR 141

FI1G. 2. Accepting computation subtrees P to construct Sﬁ; »(3):

SP(P) < j. (iii) If there is a pair (t,5') in S (i') for some odd i’ < 4, then j' > j.
If 7 is even, then P has root (¢, z;y, L) instead of (¢,z;y, R) and “odd” above should
be replaced by “even.” Intuitively speaking, the fact that (¢, j) exists in S!;y(i) means
that the global state ¢ can lead to acceptance while using 5 space and i — 1 crosses most
economically: If t can lead to acceptance while using j space and ¢ — 3 (or fewer) crosses
or while using j — 1 (or less) space and i crosses, then (¢, j) does not appear in Sgg;y(i).
Let us observe more about this. Suppose, for example, that (a, 8), (b, 3), and (c, 5) are
in Sk, .y(3) for global states a, b, and c. Then we know that M needs 8 space to go from
global state a to acceptance. However, we cannot rule out the possibility that M needs,
for example, only 5 space to do the same if we allow M to cross the boundary more:
There may be a computation subtree @ such that it has root (a, z;y, R) and all paths
end when M crosses the boundary not from right to left (the first cross) but from left to
right (the second cross) and such that SEC,,,(Q) = {b, c}. If that is the case, then (a, 5)
should be in SE, (5).

Thus S’“’ seems to depend on both sides of the boundary, both = and y of the input
zy. However, this is not desirable for attempting to apply the cut-and-paste. One can
see that the proof of Proposition 3 fully depends on the fact that S;gm is determined by
only the right side of the boundary. It is for this reason that the next claim is important.

CLAM 1. Ifiisodd,then S’a’f;y (%) is determined by the right-side string y of the boundary
and by St (2), Sk, (4) -, Sk (i —1). If i is even, then SE. (i) is determined by the left-
side string x and by y(l) Sﬁ (3),---, Sk, (i—1).

Proof. By the definition, Sk, (1) contains all (¢;,j1) such that the global state ¢;,
which M is in when crossing the boundary from left to right, leads to acceptance while
using j; (not less) space and never coming back to the boundary. (Note that it does not
matter whether M can actually reach the boundary in ¢; from Ijy;¢.) Thus Sa’;y(l) clearly
depends only ony.

Next it is shown that S, (2) can be constructed from z and S¥,, (1). For each global
state to = (w, h, s) (Jjw| < k) we construct, if there are any, all computation subtrees P,
such that (i) P has root (t2,z;y, L) and every path ends when it crosses the boundary
from left to right for the first time (see Fig. 3) and (ii) SEC,,y (P2) C {t| (¢,5) € Sk, (1)},
where SEC;.,(P>) denotes, as before, the set of all global states M is in when it crosses
the boundary. For such a subtree as P, we also define SP(P,) as

SP(P;) = max{j|3ts.t. t € SEC,y,(P,) and (t,5) € Sk, (1)}

142 KAZUO IWAMA

F1G. 3. Computation subtree Ps.

Note that there are, in general, many such P,’s for a single ¢;. We select from among
them one such that SP(P) is minimum (= j2) and (2, j2) is included in S%(2). Note
that we used only z and S]j;y(l) for this construction.

Now suppose that we have constructed S%,, (1) through S, (i) for an even i. To
obtain %, (i + 1), we first let

MINSf,y(z) = {(t,J) | (t’J) € S:,y(z) U S:’l:c,y(4) U---u S;:c,y(z) and
(t’jl) ¢ S:f,y(2) U S;:c,y(4) U---u S;:c,y(z) lfjl < .7}

Thus the fact that (¢, j) is in MINSZ,, (i) means that the global state ¢ at the left side of
the boundary (on the rightmost symbol of z) can lead to acceptance with j (but not less)
space if it can cross the boundary i—1 or fewer times. Now, as before, for each global state
t;+1 we construct all computation subtrees P, such that (i) P;;; hasroot (t;+1, z;y, R)
and every path ends in acceptance directly (without coming back to the boundary) or
ends when it crosses the boundary from right to left for the first time (Fig. 4) and (ii)
SEC:y(Piy1) C {t|(t,5) € MINSE, (3)}. (It should be noted that SECy, (P;11) in-
cludes several global states, each of which may need different crosses before ending with
an accepting configuration. That is why we introduced MINSﬁy (¢).) SP(P;+1) is defined
as

SP(P;+1) = max{j| (i) 3ts.t. t € SECy;y(Pi41) and (t,j) € MINSE, (i)
or (ii) 3 path from the root directly to acceptance while using j space}.

Among all the subtrees thus constructed, we select a subtree P;; such that SP(P;;) is
minimum (= j;4+1). Thus obtained, (¢;+1,7:+1) is not included in Sﬁ;y(i + 1) uncondi-
tionally, however. It is included in S%., (i + 1) if (¢,), such that t = ¢;;; and j < ji41,
is not in MINSE,, (i — 1). MINSE, (i — 1) is defined in the same way as MINS., (i), but
Sk, (2USE (4)uU---USE, (i) isreplaced by S¥, (1)USE, (8)U---USE, (i —1). (Note
that we do not violate the dependency of the construction. Sa’j;y(i — 1), for example,
was determined by y and S (2),---, Sk, (i — 2).) Intuitively speaking, (¢;41,jit1) is
added to S;f;y(i + 1) if either (i) t;+; absolutely needs at least i crosses before reaching
accepting configurations regardless of its space usage or (ii) although it is already in, say,
Sk, (i — 3), we can save space if we allow it more crosses.

ASPACE(o(log log n)) IS REGULAR 143

<‘“"

Py

—— - —— o -—

SEC(Pitr)
!

F1G. 4. Computation subtree P; 1.

The argument is almost the same for an odd ¢ and is therefore omitted. It may also

be omitted in the formal justification of the construction. 0
CLAIM 2. If k is fixed, then: (i) there exists an integer i such that Sk, (i) = ¢, and (ii)
lfS:’:’y(’l) = ¢, then S;:c,y(z + 1) = S:,cc,y(," + 2) ==

Proof. Part (i) is almost obvious by the restriction that all (¢, j) in S%, (i) satisfy j < k
and by definition (iii) of S%,, (i). (ii) If S, (i) = ¢, then by the definition MINSY, (i) =
MINSE,, (i — 2). One can see that if some (t, j) were in S¥,, (i + 1), then they would also
be in S£, (i — 1), which contradicts definition (iii) of S, (i) again. n|

Now we define S};;y. Fix some input string zy that is accepted by M and integer k.
Then by Claim 2 the sequence S¥., (1), S, (2), - - - becomes empty at some moment and
remains empty after that. Let S¥. (p) be the last member of the sequence that is not
empty. Then S%,, is defined as (S¥,, (1), %, (2),-- -, Sk, (p)).

CLAIM 3. Let xyz be an input string. Then Sk, = Sk, .
Sk ..

Proof. By Claim 1both S, (1) and Sk, (1) depend only on z, and therefore they
must be the same. Then

implies Sk, = Sk, =

k _ gk _ gk
Smy;z(l) - Sm;yz(l) - Sm,z(l)

by the assumption. This and Claim 1 imply that S¥. _(2) = Sk, (2) and therefore that
S;:cy;z(2) = S;:c;yz(2) = S;:c,z(2)

We can continue this argument step by step until we get to

Saya(P+1) = S5ya(p+1) = Sz, (p+1) = ¢ o
CLAIM 4. Suppose that S, = Sk ... Then if ATM M accepts input xyz using k, but

not k — 1 or less, space, then it also accepts xz using k, but not k — 1 or less, space.
Proof. The proof is very similar to the last portion of the proof of Proposition 3 (see
Fig. 5). Let

MINSE., = {(t,5)| (t,) € Sk, (i) for some odd ¢ < p and
(t,5') ¢ Sk.,(4) forany odd i < pif j' < j}.

The definition means that if (¢, j) is in MINSY., then the global state ¢ at the right side

of the boundary can lead to acceptance with j (< k), but not with j — 1 or less, space.

144 KAZUO IWAMA

Lini

Sav=(1) O Szyia(1)

FI1G. 5. Cut-and-paste in off-line ATMs.

Now suppose that M accepts zyz using k space. Then one can see that there is a
computation subtree Py (having root Iin;; and for which all paths end when the input
head crosses the boundary for the first time) such that

SECq;y.(Po) C {t| (t,j) € MINSE.,.}.

We next consider the input zz. Since S¥,, = Sk, ., Sk = Sk by Claim 3. Then it is

clear from the definition that MINSL‘W = MINS ’°y Hence the computation subtree Py
introduced above satisfies the condition that

which says that zz is also accepted while using & space.

Similarly, we can show that if xz is accepted while using k' space, then zyz is also
accepted while using &’ space under the condition that ¥, . = S¥ . That is enough to
prove the claim. 0

Now we are ready to carry out the enumeration. Suppose that v = zyz is the shortest
string accepted by M while using k space. Then by Claim 4 S¥, vz and Sk . must be
different for any y # e. Recall that Sf, . = (S%,.(1),5%,.(2),--,S;, yz(p)) Each

Yz

ASPACE(o(log log n)) IS REGULAR 145

Sk. = (%) consists of pairs like (t, j) of a global state and an integer < k. The number of
all different such pairs is bounded by c* for a constant c, and therefore the number of
all different S¥. . (i)’s is bounded by 2", A key fact is that our construction of Sk 2 (1)’
guarantees that S;f;yz(il) and Sﬁ;yz(ig) are disjoint if ¢; and i3 are both odd (or even).
Since Sﬁ;yz(i) is a subset of the (at most) c* different elements, it follows that

p/2 < ck.

Thus the number of different S*

Yz

is bounded by
(20"’)p < (2c'°)2c'° — 2202"‘ < 2d'°
for some constant d, which is enough to claim the theorem. a

Appendix. Let EXBIN be the language that contains strings of the form

fuoltvolfui v - - - fusltvill - - - fun fun futivl

such that (i) n > 0 and v; = bin(i) (see §2 for bin(s)), (ii) u; is any string over {0,1}
and |u;| = |v;|, and (iii) for some j, v = u; and v = v;. As for Theorem 2 below, a
different language that is based on the prime-number theory and plays the same role as
EXBIN is found in [3]. However, the current language would give us a more intuitive
image of the difference of abilities between small space-bounded NTMs and ATMs as
well as between on-line ATMs and off-line ATMs (Theorem 3).

THEOREM 2. (i) EXBIN needs log n nondeterministic space (off-line). (ii) loglogn
alternating on-line space is enough for the same language.

Proof. (i) Intuitively, loglogn space-bounded NTMs can check conditions (i)
and (ii) but not condition (iii). In what follows, every string satisfies all the conditions
above except for condition (iii). Suppose that there is a k-space-bounded off-line
NTM M that recognizes EXBIN. We focus our attention on the boundary between
Huofbin(0)4 - - - fu,fbin(n)4 and fufv of each string. The left-side portion is determined
by ug, u1, -« - , un, which we denote by left(ugu; - - - up,). Suppose that M, if it crosses that
boundary in global state ¢ from right to left (i.e., enters left(uous - - - u,) from right),
can come back to the same boundary (exits left(uous - - - u,)) in global state s. Then let
St(up - - - up,) denote the set of all such global states s. (Note that more than one such s
may exist since M is nondeterministic.) Also let

S(uo -+ un) = (So(tg -~ un), oy (o - -), - -+, S, (g - - - un)),

where Sy (up - - - uy,) is the set of all the global states s in which M can get to the boundary
for the first time from I;y;;, and ¢, through ¢, are all different global states in some fixed
order. Note that p is bounded by c* for some constant c.

Now suppose that wou; - - - up, # uguf - - - u,. Then S(upuy - - - u,) must be different
from S(ugu} ---ul,). (The reason is as follows: Suppose that u; # u). Consider two
strings

21 = left(uo-- ;- - un)fuslibin (),

22 = left(up---uj- - up)fusfbin(i)f
Since z; is in EXBIN, M accepts it. Then one can see that if S(ug - - - upn) = S(ug - - - ul,),
then M also accepts 29, a contradiction.) Note that the number of different uou; - - - up,

is at least 2/V/¢ for some constant d and for the length N of the input. On the other hand,
the number of different S(up - - - u,,) is bounded by

146 KAZUO IWAMA

(2Ck)ck - 202):'
Then to satisfy S(ug - - - up) # S(ug - - - ul,) for every two strings ug - - - u,, and ug - - - ul,,
we need the condition 2¢** > 2V/4 or

k>clogN

for some constant c;.

(ii) It is not difficult to see that condition (iii) can now be checked by using log log n
space. The details are omitted.]

THEOREM 3. Let EXBIN® = {z® |z € EXBIN}. Then (i) there is a log log n space-
bounded off-line ATM that recognizes EXBIN®, but (ii) at least logn is necessary (and
sufficient) to recognize the same language by on-line ATMs.

Proof. Part (i) is obvious by Theorem 2. (ii) It is now difficult for log log n space-
bounded ATMs to check condition (iii). Again we look at the boundary between y =
foffuRy and x = $bin(n)Rfuly - - - fbin(0)R4uf. Now recall Proposition 3. Let S be
the set of all global states at the boundary between y and z that lead to acceptance. By
the same line of observation as for Theorem 2 one can see that at least 27/ different
S’s, each of which corresponds to a different = above, are necessary. Suppose that a
k-space-bounded on-line ATM M recognizes EXBINE. Then

2c’° > oN/d

should be met, which implies & > ¢, log N for some constant c;. 0

Remark. Recall that all the results in this appendix assume the standard definition.
However, they also hold under the strong definition except for the sufficient part in (ii) of
Theorem 3. Under the strong definition log n is probably not sufficient since, intuitively,
the on-line ATM should hold the §v®§uff portion of the input in its work tape before it
knows whether the following portion is correct (i.e., whether it is exponentially longer
than foffu®y).

REFERENCES

[1] M. ALBERTS, Space complexity of alternating Turing machines, in Lecture Notes in Computer Science, 199,
Springer-Verlag, Berlin, New York, 1985, pp. 1-7.
[2] A.CHANDRA, D. KOZEN, AND L. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 28 (1981), pp. 114
133.
[3] J. CHANG, O. IBARRA, B. RAVIKUMAR, AND L. BERMAN, Some observations concerning alternating Turing
machines using small space, Inform. Process. Lett., 25 (1987), pp. 1-9.
[4] , Erratum, Inform. Process. Lett., 27 (1988), p. 53.
[5]1 J. HoPCROFT AND J. ULLMAN, Formal Languages and Their Relation to Automata, Addison-Wesley, Read-
ing, MA, 1969.
[6] K.IWAMA, Low-level tradeoffs between cross and alternation, Tech. Report, Kyoto Sangyo University, Ky-
oto, Japan, 1986.
[7]1 R.KANNAN, Towards separating nondeterminism from determinism, Math. Systems Theory, 17 (1984), pp.
29-45.
[8] R.LADNER, R.LIPTON, AND L. STOCKMEYER, Alternating pushdown and stack automata, SIAM J. Comput.,
13 (1984), pp. 135-155.
[9] W. Ruzzo, Tree-size bounded alternation, J. Comput. System Sci., 21 (1980), pp. 218-235.
[10] R. STEARNS, J. HARTMANIS, AND P. LEWIS, Hierarchies of memory limited computations, in Proc. IEEE
Symposium on Switching Circuit Theory and Logical Design, 1965, pp. 191-202.
[11] 1. SUDBOROUGH, Efficient algorithms for path system problems and- applications to alternating and time—
space complexity classes, in Proc. 21st IEEE Symposium on Foundations of Computer Science, 1980,
pp. 62-73.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 147-156, February 1993 012

THE COMPLEXITY OF MALIGN MEASURES*
PETER BRO MILTERSEN'

Abstract. This paper analyzes the concept of malignness, which is the property of probability ensembles
making the average case running time equal to the worst case running time for a class of algorithms. The au-
thor derives lower and upper bounds on the complexity of malign ensembles, which are tight for exponential
time algorithms, and which show that no polynomial time computable malign ensemble exists for the class
of polynomial time algorithms. Furthermore, it is shown that for no class of superlinear algorithms a poly-
nomial time samplable malign ensemble exists, unless every language in P has an expected polynomial time
constructor.

Key words. average case complexity, malignness

AMS(MOS) subject classifications. 68Q15, 68Q30

1. Introduction. The average case time complexity of specific algorithms has for a
number of years been an active area of research, often showing significant improvement
over the worst case complexity when specific distributions of the inputs were assumed. Li
and Vitanyi [4] studied the Solomonoff-Levin measure m and found that when the inputs
to any algorithm are distributed according to this measure, it holds that the algorithm’s
average case complexity is of the same order of magnitude as its worst case complexity.
More precisely,

Jde>0: Z —m(—w)TA(w) > cmax Ty(z).
2 T e m()
In this paper, we use the term malign for such a measure.

The result seems significant for the following reason: Li and Vitanyi argue in [5] that
the Solomonoff-Levin measure should be used as the a priori probability in Bayesian rea-
soning because, in a certain sense, it lies close to any recursively enumerable measure
(it dominates them multiplicatively). Similarly, they argue in [4] that if inputs are given
from a natural source, the result implies that with high probability the average case time
will be close to the worst case time, so that no improvement is possible. This would make
worst case complexity the significant way to measure the cost of computation, and aver-
age case considerations with respect to, e.g., the uniform distribution much less relevant.

However, since the Solomonoff-Levin measure is not even recursive, the result
has no immediate implications for the complexity theory of average case complexity,
founded by Levin in [3] and extended in [2] and [1]. In Levin’s approach to average case
complexity, the distribution function of the input measure is required to be polynomial
time computable. Thus, it is natural to ask if some kind of time bounded version of Li
and Vitanyi’s result can be derived.

In this paper, we analyze from a complexity-theoretic perspective the property of
malignness. We restate Li and Vitanyi’s result and give a simple proof. It seems that
the surprising property of malignness is dependent upon an exponential time pattern,
which in our view makes the above interpretations less obvious. We present a number of

*Received by the editors November 28, 1990; accepted for publication (in revised form) November 21,
1991. A preliminary version of this paper appeared in the Proceedings of the 6th Structure in Complexity
Theory Conference, Chicago, Illinois, June 1991. The work was partially supported by the ESPRIT II Basic
Research Actions Program of the European Community under contract 3075 (project ALCOM).

tComputer Science Department, Aarhus University, Ny Munkegade, Building 540, DK-8000 Aarhus C,
Denmark.

147

148 PETER BRO MILTERSEN

results that support this intuition. Our results pose a limit on the results achievable in the
average case direction by the time bounded versions of the Solomonoff-Levin measure,
which are also discussed in [4]. In general, they suggest that if inputs are produced by a
polynomial time adversary, phenomena like the above will not arise.

2. Notation.

e We consider the fixed binary alphabet ¥ = {0,1}. X* is the set of binary strings
with the usual ordering, first by length and then lexicographically, and X" is the set of
strings of length n. By — 1 we denote the string preceding z, and by = + 1 the string
following . The empty string is denoted A. The length of the string z is denoted by |z|.
(-,-) denotes a polynomial time bijective pairing function * x £* — * with polynomial
time projections.

o A measure p on a finite or countable set M is a function from M to the real num-
bers, with p(x) > 0 for all z. Given a subset A C M, we define

u(4) = " ().

T€EA

A probability measure is a measure with) 5, u(x) = 1. Given a measure p on X* or
¥, we denote by p* its distribution function p*(z) = p({y|y < z}). If u(X") # 0, the
nth derived measure of is the probability measure on X" defined by

e A function f : ¥* — R is called polynomial time computable if there exists a
polynomial time Turing machine transducer, which on input (z, 1) produces the binary
notation of a number ¢ with

|f(@) —t] <27°

In general, if the machine runs in time at most g(|z|,), we say that f is computable in
time g(|z|, 7).

e Our model for algorithms is, for concreteness, multitape Turing machines. The re-
sults are easily transferred to other models. An algorithm takes one input z, and it always
halts. Algorithms cannot be effectively enumerated of course, but the Turing machines
are assumed enumerated A;, A, ... such that simulation, including stepcounting, etc.
of n steps of A; on input = can be performed in time polynomial in 4,|z| and n.

¢ Given an algorithm A, we define T4 (z), z € ¥* to be its running time on the binary
string z. Given a function f : N — N, we define

ALG(f) = {A|Ta(z) < f(|z]) for all z, except a finite number}.
TAU (n) = MaX|g|=n Ta (.’L’)

is the algorithm’s worst case running time. We denote by w4(n) the lexicographically
least string in X" with T'(w4(n)) = T4 (n).

Th(mn) = 3 pn(e)Ta(@)

|z|=n

is the algorithm’s average case running time with respect to the measure .

THE COMPLEXITY OF MALIGN MEASURES 149

3. Malign measures. In this section malignness is defined and Li and Vitanyi’s re-
sult on the Solomonoff-Levin measure is presented. We give a direct proof and skip the
conceptual developments of [4]. We consider the class of Turing machines, where each
machine has three tapes:

¢ A binary input tape, infinite in one direction, with the restriction that the head can
only move in this direction. Thus, the input tape is one-way, one-way infinite;

e A two-way, infinite, work tape;

¢ A one-way, one-way infinite binary output tape.

The input tape and the output tape are started with their heads on the first square, and
a machine must be able to determine by itself when it has read its input. Now consider
an acceptable enumeration M7, M, . .. of the above class of Turing machines, and let U
be a machine universal for the class, i.e., U will on input 1¢0t, where ¢ is an infinite tape,
halt if and only if the machine M; on input tape ¢ halts, and U will in that case output
whatever M; outputs.

We next consider the input tape of U filled with the results of an infinite sequence
of coin tosses. The Solomonoff-Levin measure m(z) of a string € " is then defined
as the probability that U halts, outputting z. Since U of course has a nonzero probability
of not halting, we have that

Z m(z) < 1.

reX*

The Solomonoff-Levin measure was first defined rigorously (for continuous sample
spaces) in [8]. Intuitively, it gives a large amount of measure to strings with lots of pat-
tern, since these have short programs that have a high probability of appearing. Actually,
it is closely tied to self-delimiting Kolmogorov complexity, since m(z) = ©(2-%(®)),
where K (z) is the self-delimiting Kolmogorov complexity of z, but we do not need this
result here (see [8] for a proof, and [5] and [6] for general discussions of the properties
of m).

DEFINITION 3.1. A measure p is malign for an algorithm A if and only if there exists
a ¢ > 0 such that for all sufficiently large n,

Ti(p,n) = cT{(n).

It is malign for a class of algorithms A if it is malign for each A € A.
The following is the main result from [4] on average case complexity.

THEOREM 3.1 (Li and Vitanyi). The Solomonoff-Levin measure m is malign for all
algorithms.

Proof . Consider the following Turing machine M, of the above kind.

Read the prefix 10, 5 > 0 from the tape.
Simulate U on the rest of the tape.
if U halts then
n := |U’s output|
simulate A; on all inputs of length n, finding the lexicographically
least worst case output, w 4, (n) (This may not halt.)
output wa, (n)

fi

Assume M = M, in the above enumeration, and assume that : is the index of an al-
gorithm, i.e., that A; halts on all inputs. If U is started with the tape 1*01?0t, where U,

150 PETER BRO MILTERSEN

started on ¢, outputs a string of length n, U will output wy4, (n). The events of reading
1%01¢0 and reading ¢ are independent. But this means that for all n,

m(wg,(n)) > 275 2m(Z").

But then

m(wa,(n

T3, (m,n) > % A
Observe that the proof uses that the worst case input to A; of length n can be described
in the following way: “The worst case input to A; of length n.” Thus w4, (n) has a short
description, i.e., lots of pattern. The problem with the pattern “The worst case input to
A; of length n” is that it may take at least exponential time to get from the description to
the result. Thus, the pattern is computationally difficult. The main object of this paper
is to establish that this is the way it has to be. In general it does not hold that inputs that
are slow to process have an easy pattern. To make this more precise, we want to answer
questions of the following kind: Suppose p is malign for a class of algorithms .A. What
complexity does p have?

_ If the complexity of a measure is defined in a suitable way, it is our belief that natural
input sources are unlikely to have exponential complexity. Indeed, we would not expect
the source to have resources that are exponentially larger than the resources of the al-
gorithm to which it supplies inputs. This motivates searching for lower bounds on the
complexity of malign ensembles. As in the theory of Average-NP [3], [2], [1], it seems
natural to take the computational complexity of the distribution function p* as the com-
plexity of 4. However, if we put no further restrictions on g, this does not seem to be
the correct approach, as the following theorem shows.

THEOREM 3.2. For each general recursive function f there exists a measure p that is
malign for ALG(f) and whose distribution function p* is polynomial time computable.

Proof. The idea of the proof is to let the jth digit of x,(x) be 1 if and only if = is
the lexicographically least worst case input of A;. In order to remain within the time
bounds, we let u(X™) vanish rapidly. Define

(n) > 2_k_i_2TX’i (n). 0

T(x,i,t) = min(T4, (), t).

w(n,i,t) = min{y € Z"|Vz € " : T'(y,1,t) > T(z,1,t)},
i.e., w(n,i,t) is the lexicographically least worst case input of A; of size n, when A; is

restricted to run for at most ¢ time steps. Let g be a time constructible function with
g(n) > f(n) for all n. Define

’U(n, ’L) = w(n7 i, g(n))

Observe that v(n, ¢) can be computed in time ¢(n, i) = ¢(2"p(n, i, g(n))), where p and ¢
are polynomials, by simulating A; on all inputs of length n. Put

u(n) = t(n,n).

By choosing p and ¢ appropriately (sufficiently large), u can be made time constructible.
We can without loss of generality assume that u(n + 1) > u(n) + n. Now define

THE COMPLEXITY OF MALIGN MEASURES 151

if i < u(|z]),
if u(|e]) <i <u(jz]) + x| and o(jz],i - u(lz])) # =,

i) ={ . .
ifu(lz]) <i<u(le]) +[z| and o(|z],i— u(|z]) ==,

o = O O

if u(|al) + || <7,
p(z) = Zb(m,)27
i=1

Since v(n, j) € ", we have

u(n)+n

pEm = Y 27t<2mvm,
i=u(n)+1

Fix an algorithm A; € ALG(f). We have that v(n, j) = wa,(n) for sufficiently large n.
But then

b(wa,(n),u(n)+j)=1 forn>j
and, therefore,
p(wa,(n)) > 2743,
m(wa,(n))
p(z™)
T3, (1 m) 2 pn(wa, (n))Ta, (wa, (n) > 27T (n).
Thus p is malign for ALG(f). It remains to show that p* is polynomial time computable.

pr(@) =D w(®) +p{yllyl = 2| Ay < z}).
i<l|=|

/“Ln(wAj (n)) = > 2_ja

The ith binary digit of Ej<|w| p(27) is 1if and only if there existsanm € {0, ..., |z| -1}
so that u(m) < i < u(m)+m. This can be decided in time polynomial in |z| and , since u
is time constructible. For the second term, observe that the ith binary digit of p({y||y| =
|z] Ay < z}) is 1 if and only if u(|z|) < ¢ < u(|z|) + |z| and v(|z|,i — u(|z|)) < z. The
inequality u(|z|) < ¢ < u(|z|) + |z| can be checked in polynomial time and if it is found
to hold, the calculation of v(|z|,i — u(|z|)) can be done in time

t(lzl, i — u(z))) < t(|el, |o]) = u(lz]) <. 0
Of course, the theorem (and in particular its proof) suggests that the complexity of the
measure p itself is not particularly relevant when we are interested in properties such as
being malign for a class. This is no big surprise, since we only use the derived probability
measures u,. The time bound is achieved by letting 1(3X") vanish very rapidly, so that
the nonzero digits of p(x) appear so late that we have a sufficient amount of time to
compute them. The fact that p is not necessarily normalized, i.e., that (X") may not
be 1, thus seems to be giving us an unreasonable advantage in the computation of p*. If
we instead look at the time required to compute the normalized i, (), no such trick
will work. It is, therefore, still reasonable to conjecture that it requires time exponential
in z to compute this number, since the computation of a digit seems to require running
an algorithm on all inputs of size |z|. Consequently, from now on we require that the
measures we consider are normalized.

152 PETER BRO MILTERSEN

4. Malign ensembles.

DEFINITION 4.1. A probability ensemble (or merely ensemble) is a function g :
¥* — [0,1], with pu(X") = 1 for all n.

Thus, if p is an ensemble, pu(z) = 4 (z) for all z.

DEFINITION 4.2. An ensemble p is called polynomial time computable if and only
if its family of distribution functions z — i (x) is polynomial time computable. We
denote by PE the class of polynomial time computable ensembles. In general, we say
that an ensemble is computable in time f(|z|, ¢) if ;| is computable in time f(|x|, %), in
the sense of §2.

This definition relativizes in the obvious way.

We can, through the use of essentially the same technique as in the proofs of The-
orems 3.1 and 3.2, construct malign ensembles and hence provide upper bounds for the
time required to compute malign ensembles for certain classes of algorithms.

THEOREM 4.1. There exists a polynomial p so that for any time constructible function
f there exists an ensemble p, computable in time p(2!*! f(|z|),) so that p is malign for
ALG(f).

Proof. Define

T(=,i) = min(T4,(z), f(|2])).

By our assumptions on the enumeration A;, T'(z, ¢) can be computed in time p; (f(|z|), ©),
where p; is a polynomial, which, by the time constructibility of f, does not depend upon
f. Define

w(n,i) = min{z € Z"|Vy € " : T(y,¢) < T(z,%)}.

The function w can be computed in time p2 (2™, p1(f(n), 7)), i.e., in time p3(2" f(n), 7).

bz, i) = {1 if w(|z,i) =z,

0 otherwise,
ﬂlzl(w) = Z b(z, 7:)2_1:'
i=0

p is a probability ensemble. It can be computed in the required time because the ith
binary digit of 7, (z) is 1 if and only if w(|z|,4) < z. It only remains to show that it is
malign for ALG(f). But for this we observe that if A; is such an algorithm, T'(z, j) =
T, (x) for sufficiently large |z|, and for these x, b(x, j) = 1 if z is the lexicographically
least worst case input of size |z| for A;. But then
T3, (1) > 27T, (n)

for sufficiently large n. O

Of course, if f € 22", the factor 2/*| can be omitted from the stated time, i.e., for
classes of exponential time algorithms, we can compute the ensemble almost as fast as
the algorithms run.

COROLLARY 4.1. There exists an ensemble p, computable in time p(2!®!, 1), where p is
a polynomial, so that p is malign for the class of polynomial time algorithms.

Theorem 4.1 and the corollary reflect our intuition from the proof of Theorem 3.1:
Malignness can be obtained if we are willing to use exponential time. By using the same
technique, we can provide a recursive measure that is malign for classes of algorithms

THE COMPLEXITY OF MALIGN MEASURES 153

with some recursive upper bound on their running time. It won’t provide us with a re-
cursive measure for the class of all algorithms, and, as is proved below, no such thing
exists. We now turn to a negative result, complementing Theorem 4.1.

THEOREM 4.2. There is an € > 0 and a polynomial p, such that for all nondecreasing
time constructible functions f with f € Q(p), there is no ensemble p, malign for ALG(f)
and computable in time f(|x|)¢h(z), where h is any function.

Proof. The idea of the proof is the following: Given an ensemble p, we can find a
string y with low p-value by binary search. We can then construct an algorithm A for
which p is not malign by making sure A runs for a long time on the input y.

Given a nondecreasing, time constructible function g, g € Q(n) and any function
h, consider an ensemble p, computable in time g(|z|)h(¢). We may assume that h is
recursive, since h(i) otherwise can be replaced with max,, Ty, (n,4), which is recursive.
We may furthermore assume that h is time constructible, strictly increasing, and tends
to infinity, since any general recursive function is dominated by such a function. Define

h(n) = min(max(1, max{j|h(j) < log(n)}),n).

By h’s time constructibility, & can be computed in polynomial time. Furthermore, the
polynomial time bound does not depend upon k. Consider the following algorithm, B:

input
y:=A B
for i := 1to h(|z|) do
vy :=a 2~ %-approximation to |, {z|z < y0l=I—i+1}
vg = a 2 *-approximation to iy (yo1l=l—%)
vz := a 2~ *-approximation to o (y1lel—it1)
if vg — v; < w3z — vg then

y:=y0
else
y:=yl
fi
od
Y= y0|$|—|1l|
if £ = y then
idle for q(g(|z|) log(|z|))? time steps (¢ being specified below)
fi

The function ¢ should be a polynomial such that ¢(g(|z|)log(|z|)) is an upper bound
for the running time of the algorithm when z # y. Observe that ¢ can be picked in-
dependently of p, g, and h. We may assume that g is of the form ¢(t) = t®. Put

€ = 3. Putting g(n) = f(n)¢, we have that B halts on almost all inputs in time

2
q(log(|z|) f(|z])€)? = log(|=|)2* f(|=|) 3, which is less than f(|z|) for almost all |z|. Thus,
B € ALG(f). By an easy induction, the invariant

) 3 i—3
pafvelz €3 < (3)

holds at the end of the ith cycle of the for loop, so the y found by the for loop has

M| (y) < (%) M

154 PETER BRO MILTERSEN

We then have

3= (2)" T+ TG

But this is smaller than ¢T'g (n), for any ¢ > 0, for sufficiently large n, i.e., p is not malign
for B, which was to be proved. a

For exponential time algorithms the lower bound matches the upper bound of The-
orem 4.1 within a polynomial. The theorem implies that no recursive measure is malign
for the class of all algorithms and thus that the Solomonoff-Levin measure is not recur-
sive (of course, this can be proven in more elementary ways, see [6]). For polynomial
time algorithms, we have the following.

COROLLARY 4.2. No ensemble p € PE is malign for the class of polynomial time
algorithms.

5. Malign ensembles for classes of fast algorithms. Corollary 4.2 still leaves some-
thing to be desired. After all, most algorithms we are likely to run will be in, e.g.,
ALG(n*). It still seems that exponential time is required to compute malign ensem-
bles for such classes, even if our lower bound is much smaller. However, we are not
likely to be able to prove these intuitions correct because the following theorem tells us
that in order to show that superpolynomial time is necessary, we would have to prove
P # NP. We are reusing the technique from the previous constructions.

THEOREM 5.1. Forall k, an ensemble pu € PE™ exists, which is malign for ALG(n*).

Proof. Put f(n) = n* in the proof of Theorem 4.1. This makes T'(z, i) polynomial
time computable. Observe that the ith binary digit of x, () is 1 if and only if

JyeX"VzeX" [y <zAT(21) <T(y,1)],

and this is a X3-problem. 0

It thus seems that we will have to concentrate on merely making the existence of such
a PE-ensemble unlikely, instead of trying to prove that it does not exist. We will indeed
do this, by deriving from it a complexity-theoretic equality that seems unreasonable,
although it is a lot weaker than P = NP. For this, we need a result on sampling.

DEFINITION 5.1. An ensemble p is polynomial time samplable if a polynomial time
probabilistic Turing machine exists, which on input (17, 1*) produces a string of length
n, M(n, i) such that for all x € X",

|Pr(M(n,i) = z) — pn ()] < 275

Thus, the polynomial time samplable ensembles are those ensembles that can be ap-
proximated as the output distributions of polynomial time probabilistic algorithms. A
similar definition and an analogy to the following theorem can be found in [1]. Note
that we cannot demand that the strings are produced with the exact probability, since it
is easy to see that no probabilistic machine with a worst case time bound can produce a
string with an irrational probability. Thus, demanding exact sampling would make the
following theorem false.

THEOREM 5.2. Every ensemble p in PE is polynomial time samplable.

The proof is essentially equal to the one in [1] and is, therefore, omitted. We might
note that the converse result holds if and only if P = PP.

DEFINITION 5.2. Given a language L. An expected polynomial time constructor
for L is a probabilistic algorithm that on input 1™ produces an z € L N X" in expected
polynomial time if one exists and otherwise fails to halt.

THE COMPLEXITY OF MALIGN MEASURES 155

This is a natural generalization of the deterministic constructors defined and studied
by Sanchis and Fulk in [7]. A useful equivalence is the following.

LEMMA 5.1. Every L € P has an expected polynomial time constructor if and only if
every L € DTIME(n) has one.

Proof. Suppose every L € DTIME(n) has a constructor. Let J be a language in P.
There is a constant c, such that J € DTIME(n¢). Define J = {21012I°|z € J}. Itis easy
to see that J € DTIME(n), so, by assumption, J has a constructor, C. By running C on
input 17*+1+7° and extracting the first n digits of the output if C halts, we get a string in
LNn¥™. a

THEOREM 5.3. Suppose a polynomial time samplable ensemble pis malign for ALG(f),
where f is a time constructible function with n € o(f). Then every L € P has an expected
polynomial time constructor.

Proof. By Lemma 5.1, we need only to show that every L € DTIME(n) has a con-
structor. Consider the following algorithm Ajy,:

Input

Decide if z € L.

If it is not, halt immediately.

If it is, wait f(n)/2 time-steps before halting.

Ar is an ALG(f)-algorithm, so there exists a c¢ so that T (u, n) > cT'y (n). We will
show that for sufficiently large n,

LNE"# 0= p,(LNE") >

N o

Assume not, i.e., u, (L NX") < ¢/2. Then
C
> (@) Ta(e) < ST ().
ceLNT"
We also have that for sufficiently large n:
Z pn(z)Ta(z) < n.
zeX™\L
But then
i
2

If LNX™ # (, the algorithm will run for f(n)/2 time steps for some value of z. Therefore,

Ti(n) +n 2 Ti(p,n) 2 cTZ (n).

n> gT}{’(n) > %n_),

which is a contradiction for sufficiently large n. Let M be a polynomial time sampler for
. By the definition of sampling, if LNX™ # (), then Pr(M(n, [—log $]+n) € LNX") >
(¢/2) — (¢/4) = ¢/4. Thus, running M several times on input < 17,1/~ 18 §1+7 > yntil
an element of L is produced, is a construction of such an element in expected polynomial
time. g

The following theorem (an analog to Proposition 4.1 in [7]) makes expected poly-
nomial time constructors for all languages in P unlikely.

DEFINITION 5.3. Let RE be the class of languages L for which there exist a prob-
abilistic Turing machine, running in time 2¢/*| on input z, rejects if z ¢ L, and accepts
with probability at least 1 if z € L.

156 PETER BRO MILTERSEN

Thus, RE is for E = U.>oDTIME(2°") what RP is for P. Hence, RE should be
considered a rather small extension of E, and RE = NE, where NE = U.>oNTIME(2™)
must be considered only slightly more plausible than £ = NE. Actually, by standard
arguments RE = NFEif and only if there are no tally languages in NP — RP.

THEOREM 5.4. Ifevery L € Phas an expected polynomial time constructor, then RE =
NE.

Proof. Let L be alanguage in NE, and let M be a nondeterministic machine, running
in time 2°* and recognizing L. We can represent the nondeterministic computations
of M on input z as binary strings of length at most 2°/*/, where the bits represent the
nondeterministic choices of M. Denote by z¢, the lexicographically ith string of size n.
Define f : £* — N by f(z}) = 2°" + i. The function f is clearly injective, provided
¢ > 1, which we may assume. Now consider

L = {y| 3z : |y| = f(z) and y codes an accepting computation of Mon x}.

Clearly L € P and has, therefore, by assumption, an expected polynomial time con-
structor, C. Let p(n) be an upper bound on C’s expected running time on inputs of size
n. If we simulate C on 1/(®) for 2p(f(z)) time steps and accept if an element has been
produced by then and reject otherwise, we have an RE-acceptor for L. 0

COROLLARY 5.1. Ifan ensemble p € PEis malign for ALG(f), where f is time con-
structible and n € o(f), then RE = NE.

Thus, if we assume RE # NE, we get a superpolynomial lower bound on ensembles
malign for this class of algorithms. By making the stronger assumption that there are
tally sets in NP, which cannot be recognized in subexponential randomized time, the
same technique gives an exponential lower bound, essentially matching the upper bound
of Theorem 4.1.

Acknowledgments. Thanks to Joan Boyar for her helpful supervision on the thesis
on which this paper is based and to Sven Skyum for useful comments and suggestions.
Lane A. Hemachandra and Paul M.B. Vitanyi pointed out some errors in the original
manuscript.

REFERENCES

[1] S.BEN-DAVID, B. CHOR, O. GOLDREICH, AND M. LUBY, On the theory of average case complexity, in Proc.
21st Annual ACM Symposium on Theory of Computing, Seattle, WA, May 1989, pp. 204-216.

[2] Y. GUREVICH, Complete and incomplete randomized NP problems, in Proc. 28th Annual Symposium on
Foundations of Computer Science, Los Angeles, CA, October 1987, pp. 111-117.

[3] L.A.LEVIN, Average case complete problems, SIAM J. Comput., 15 (1986), pp. 285-286.

[4] M. L1 AND P. M. B. VITANYL, A theory of learning simple concepts under simple distributions and average
case complexity for the universal distribution, in Proc. 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, NC, October 1989, pp. 34-39.

, Inductive reasoning and Kolmogorov complexity, in Proc. 4th Annual Structure in Complexity
Theory Conference, June 1989, pp. 165-185.

[6] M. L1 anp P. M. B. VITANYI, Kolmogorov complexity and its applications, in Handbook of Theoretical
Computer Science, Jan van Leeuwen, ed., Elsevier Science Publishers B. V., Amsterdam, 1990, pp.
187-254.

[7] L. A. SANCHIS AND M. A. FULK, On the efficient generation of language instances, SIAM J. Comput., 19
(1990), pp. 281-296.

[8] A.K.ZvVONKIN AND L. A. LEVIN, The complexity of finite objects and the development of the concepts of
information and randomness by means of the theory of algorithms, Russian Math. Surveys, 25 (1970),
pp. 83-124.

(5]

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 157-174, February 1993 013

SCAN-FIRST SEARCH AND SPARSE CERTIFICATES: AN IMPROVED PARALLEL
ALGORITHM FOR k-VERTEX CONNECTIVITY*

JOSEPH CHERIYAN', MING-YANG KAO?!, AND RAMAKRISHNA THURIMELLAS

Abstract. Given a graph G = (V, E), a certificate of k-vertex connectivity is an edge subset E’ C E such
that the subgraph (V, E’) is k-vertex connected if and only if G is k-vertex connected. Let n and m denote
the number of vertices and edges. A certificate is called sparse if it contains O(kn) edges.

For undirected graphs, this paper introduces a graph search called the scan-first search, and shows that a
certificate with at most k(n — 1) edges can be computed by executing scan-first search k times in sequence on
subgraphs of G. For each of the parallel, distributed, and sequential models of computation, the complexity
of scan-first search matches the best complexity of any graph search on that model. In particular, the parallel
scan-first search runs in O(log n) time using C(n, m) processors on a CRCW PRAM, where C(n,m) is the
number of processors needed to find a spanning tree in each connected component in O(logn) time, and
the parallel certificate algorithm runs in O(klogn) time using C(n, m) processors. The parallel certificate
algorithm can be employed to test the k-vertex connectivity of an undirected graph in O(k? log n) time using
knC(n, kn) processors on a CRCW PRAM. For all combinations of n, m, and k > 3, both the running time
and the number of processors either improve on or match those of all known deterministic parallel algorithms.

This paper also obtains an online algorithm for computing an undirected graph certificate with at most
2kn edges, and a sequential algorithm for computing a directed graph certificate with at most 2k2n edges.

Key words. parallel algorithms, PRAM, vertex connectivity, graphs

AMS(MOS) subject classifications. 05C40, 68Q22, 90B12

1. Introduction. Graph connectivity is one of the most fundamental properties in
graph theory [4] . Given a positive integer k, an undirected (or directed) graph G =
(V, E) with at least k + 1 vertices is called k-vertex connected if the deletion of any k — 1
vertices leaves the graph connected (respectively, strongly connected). A certificate for
the k-vertex connectivity of G is a subset E’ of E such that the subgraph (V, E') is k-
vertex connected if and only if G is k-vertex connected. Let n = |V| and m = |E|. Note
that kn/2 is a trivial lower bound on the number of edges in a certificate for a k-vertex
connected graph. For general k, it is not obvious that there is any upper bound strictly
less than m on the number of edges in a certificate for k-vertex connectivity; however,
nonconstructive results of Mader imply an upper bound of O(kn) for undirected graph
certificates [S]. We call a certificate for k-vertex connectivity sparse if it has O(kn) edges.
For instance, a spanning tree is a sparse certificate for the 1-vertex connectivity of a
connected undirected graph.

Sparse certificates have applications in diverse areas of computer science. For exam-
ple, they can be used for message-efficient fault-tolerant protocols in distributed com-
puting [20], [21]. Also, they are useful for improving existing graph k-vertex connectivity
algorithms. The k-vertex connectivity of a graph can be tested in two stages. Stage 1

*Received by the editors June 29, 1990; accepted for publication (in revised form) December 5, 1991.

TDepartment of Combinatorics and Optimization, University of Waterloo, Ontario, Canada N2L-3G1.
This author’s work was done at Cornell University, Ithaca, New York, and at the University of the Saarland,
Saarbriicken, Germany. His research was supported in part by the National Science Foundation, the Air Force
Office of Scientific Research, and the Office of Naval Research, through National Science Foundation grant
DMS-8920550, and by the ESPRIT II Basic Research Actions Program of the EC under contract 3075 (project
Algorithms and Complexity).

iDepartment of Computer Science, Duke University, Durham, North Carolina 27706. The research of
this author was supported in part by National Science Foundation grant CCR-9101385.

$Department of Mathematics and Computer Science, University of Denver, Denver, Colorado 80208.
This work was done while this author was with the Institute for Advanced Computer Studies (UMIACS),
University of Maryland, College Park, Maryland 20742.

157

158 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

computes a sparse certificate of the input graph. Stage 2 applies a given k-vertex con-
nectivity algorithm to the certificate obtained in Stage 1. Because a certificate preserves
the k-vertex connectivity of the input graph, Stage 1 ensures the correctness of the test.
Stage 2 can potentially improve the complexity of the test by reducing the size of the input
to the given k-vertex connectivity algorithm.

For sequential computing, Nagamochi and Ibaraki have presented an algorithm for
sparse undirected graph certificates that runs in O(m + n) time [27]. For testing the k-
vertex connectivity of undirected graphs, this gives sequential running times of O(k?n?)
for k < +/n and of O(k3n!-) for k > +/n when their sparse-certificate algorithm is
combined with Galil’s k-vertex connectivity algorithm [17]. Independently, another se-
quential algorithm for k-vertex connectivity with the same complexity for ¥ < /n was
reported in preliminary versions of this paper [9], [8], the stated bound being achieved in
the latter [8]. It is now clear that the work of Nagamochi and Ibaraki [27] was the earlier
result, although unknown to us at the time of our work.

We present an algorithm for finding sparse certificates for undirected graphs, using
a new graph search procedure called the scan-first search. This search procedure has
surprisingly efficient implementations in the parallel, distributed and sequential models
of computation. Consequently, our certificate algorithm also has efficient implementa-
tions in all these three models. Below we list the complexity of scan-first search on the
three models. Note that the complexity of scan-first search on each model matches the
best complexity of any graph search on that model.

e Parallel computing. Scan-first search runs in O(logn) time using C(n,m) pro-
cessors on a CRCW PRAM, where C(n,m) is the number of processors used to com-
pute a spanning tree in each connected component in O(logn) time. For determinis-
tic algorithms, Cole and Vishkin have shown [11] that C(n,m) = O((m + n)a(n,m)/
log n), where a(n, m) is the inverse of Ackerman’s function and has an extremely slow
growth rate [12]. For randomized algorithms, Gazit has shown [18] that C(n, m) achieves
the optimal bound of O((m + n)/logn).

o Distributed computing. Scan-first search runs in O(dlog® n) time using O(m +
nlog® n) messages, where d is the diameter of the input graph.

¢ Sequential computing. Scan-first search runs in O(m + n) time.

The advantage of scan-first search over the two most well-known graph search pro-
cedures is easy to see. Depth-first search runs in optimal linear time on the sequential
model [28] but has no known parallel implementation that is efficient [1], [2]. Breadth-
first search runs efficiently on the sequential and the distributed models [14], [3]. How-
ever, currently the best parallel implementation is no more efficient than matrix multi-
plication [19]. :

For undirected graphs, we show that a sparse certificate can be computed by exe-
cuting scan-first search k times in sequence on subgraphs of G; moreover, the resulting
certificate has at most k(n — 1) edges, only a factor of two away from the trivial lower
bound (see Theorem 2.4). Combining this result with the above implementations of
scan-first search shows that the complexity of our sparse-certificate algorithm on the
three models is as follows: O(klogn) time using C(n,m) processors on the parallel
model, O(kn log® n) time using O(k(m + nlog® n)) messages on the distributed model,
and O(k(m + n)) time on the sequential model.

Consider the problem of testing an undirected graph for k-vertex connectivity. Us-
ing the method sketched above, our certificate algorithm can be used as a preprocessing
step, both with Khuller and Schieber’s parallel algorithm [24], and with Even’s sequential
algorithm [13).This gives a parallel running time of O(k%logn) using knC(n, min{kn, m})

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 159

processors, and sequential running times of O(k?n?) when k < \/n and of O(k3n'-%)
when k > /n.

For general k, there are no previous parallel or distributed algorithms for sparse
certificates. The best previous parallel algorithm for (undirected) k-vertex connectivity,
due to Khuller and Schieber [24], runs in O(k? log) time and uses knC(n, m) proces-
sors. For m > kn, our algorithm uses fewer processors than their algorithm. For dense
graphs and for k = O(1), our algorithm runs in O(log n) time and has a time-processor
product that is within an alpha-factor of the trivial lower bound of (n?).

We also obtain the following results. For undirected graphs, we give an online algo-
rithm that computes a certificate with at most 2kn edges. This algorithm is parallelized
to run probabilistically in O(log n) time using mP(n, m) processors, where P(n,m) is
the number of processors needed to find a maximum matching in O(log® n) time with
high probability. Currently, the best value known for P(n,m) is O(mn338) [26]. For
directed graphs, we show that a certificate with at most 2k?n edges can be computed in
O(km max{n, k\/n}) sequential time.

The above discussion has highlighted the results of this paper. The following sections
proceed to detail those results. Section 2 discusses scan-first search and the algorithm
for computing undirected graph certificates in the three models. Section 3 presents the
online algorithm for undirected graph certificates and its parallelization. Section 4 de-
scribes the sequential algorithm for directed graph certificates. Section 5 concludes the
paper with open problems.

2. Scan-first search and sparse undirected graph certificates. The main result of
this section is that a sparse certificate for undirected k-vertex connectivity can be found
by iteratively performing k scan-first searches on subgraphs of the input graph.

Section 2.1 defines scan-first search and discusses how to perform the search effi-
ciently in the parallel, distributed, and sequential models of computation. Section 2.2
states the main certificate theorem based on scan-first search and discusses its algorith-
mic implications. Sections 2.3 and 2.4 prove the main certificate theorem, and §2.4 gives
a generalization of the theorem.

2.1. Scan-first search. Given a connected undirected graph and a specified vertex,
a scan-first search in the graph starting from the specified vertex is a systematic way of
marking the vertices. The main marking step is called scan: to scan a marked vertex
means to mark all previously unmarked neighbors of that vertex. At the beginning of the
search, only the specified starting vertex is marked. Then, the search iteratively scans a
marked and unscanned vertex until all vertices are scanned.

A scan-first search in a connected undirected graph produces a spanning tree defined
as follows. At the beginning of the search, the tree is empty. Then, for each vertex z in the
graph, when z is scanned, all the edges between x and its previously unmarked neighbors
are added to the tree; the edges between z and its previously marked neighbors are not
added to the tree.

For an undirected graph that may or may not be connected, a scan-first search can
be performed by applying the above search procedure to each connected component (as
well as to each isolated vertex). The search produces a spanning forest with a spanning
tree in each connected component.

Notice that scan-first search is more general than sequential breadth-first search
[14]. In other words, all sequential breadth-first search trees are scan-first search trees,
but some scan-first search trees are not breadth-first search trees. For example, let C be
an undirected graph consisting of a five-vertex cycle z1, z2, x3, 4, 5. Let e; denote the

160 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

edge {z;, i+1}. Then, C — {e2}, C — {es}, C — {e4} are the scan-first search trees of C
rooted at z;. However, C — {e3} is the only breadth-first search tree rooted at ;.

Subroutine PARALLEL SCAN-FIRST SEARCH
Input: a connected undirected graph G = (V, E) and a vertex r.
Output: a scan-first search spanning tree T' of G rooted at r.
begin
Find a spanning tree T” of G rooted at ;
Assign a preorder numbering to the vertices in 7”;
For each vertex v € T” with v # r, let b(v) denote the neighbor of v in G with
the smallest preorder number;
Let T be the tree formed by the edges {v, b(v)} for all v # r;
end.

F1G. 1. Computing a scan-first search spanning tree in parallel.

THEOREM 2.1. For an undirected graph with n vertices and m edges, a scan-first search
spanning forest can be found in O (log n) time using C(n, m) processors ona CRCW PRAM,
where C(n, m) is the number of processors used to compute a spanning tree in each con-
nected component in O(logn) time.

~ Proof. Let G be the input graph. Without loss of generality, assume that G is con-
nected. Let r be a given starting vertex in G. To prove the theorem, Fig. 1 describes an
algorithm for finding a scan-first search spanning tree 7' of G rooted at the vertex .

T is a scan-first search spanning tree of G rooted at r for the following reasons. T’
corresponds to a scan-first search in G starting at r with the preorder of 7" being the
scanning order. T is a spanning tree because every vertex except r has a neighbor with a
smaller preorder number in 7".

T can be found in O(logn) time using C(n,m) processors on a CRCW PRAM as
follows. By the definition of C(n,m), T" can be found in O(logn) time using C(n,m)
processors. By standard parallel algorithmic techniques [23], the preorder numbers and
the neighbors b(v) in Figure 1 can be computed in O(log n) time using O((n+m)/ logn)
processors. Because C(n, m) = Q((n+ m)/logn), the total complexity is O(log n) time
using C(n, m) processors. |

To find a scan-first search tree on the distributed model, we use the best distributed
breadth-first search algorithm currently known, that of Awerbuch and Peleg [3].

THEOREM 2.2. For an undirected graph with diameter d,n vertices, and m edges, a
scan-first search spanning forest can be found in O(dlog® n) distributed time using O(m +
nlog® n) messages.

Proof. The distributed breadth-first search algorithm of Awerbuch and Peleg [3] runs
in O(dlog® n) distributed time using O(m + nlog® n) messages. We first execute their
algorithm, and then modify the resulting breadth-first search forest to give a scan-first
search forest within the same complexity bounds. a

THEOREM 2.3. For an undirected graph with n vertices and m edges, a scan-first search
spanning forest can be found in O(n + m) sequential time.

Proof. The proof is easy. 0

2.2. The main certificate theorem and its algorithmic implications. The next theo-
rem shows that sparse certificates for the k-vertex connectivity of undirected graphs can
be computed efficiently.

THEOREM 2.4 (The main certificate theorem). Let G = (V, E) be an undirected
graph and let n denote the number of vertices. Let k be a positive integer. Fori=1,2,...,k,
let E; be the edge set of a scan-first search forest in the graph G;_1 = (V,E — (E;U--- U

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 161

E;_1)). Then E; U --- U Ey is a certificate for the k-vertex connectivity of G, and this
certificate has at most k(n — 1) edges.

Theorem 2.4 has algorithmic consequences for the parallel, distributed and sequen-
tial models of computation.

THEOREM 2.5. For an undirected graph with n vertices and m edges, a sparse certificate
for k-vertex connectivity with at most k(n — 1) edges can be found in O(k logn) time using
C(n, m) processors on a CRCW PRAM.

Proof. The proof is obtained by Theorems 2.4 and 2.1. a

The next theorem improves on the best previous parallel algorithms for testing the k-
vertex connectivity of undirected graphs, namely, the algorithm in Khuller and Schieber
[24] and the one in the preliminary version of this paper [10].

THEOREM 2.6. For an undirected graph with n vertices and m edges, the k-vertex con-
nectivity can be tested in O (k? log n) time using knC (n, kn) processors ona CRCW PRAM.

Proof. The k-vertex connectivity is tested in two steps. Step 1: Compute a sparse
certificate for the k-vertex connectivity of the input graph via Theorem 2.5. Step 2: Apply
the k-vertex connectivity algorithm of Khuller and Schieber [24] to the certificate found
in the first step. Step 1 runs in O(klogn) time using C(n, m) processors. Step 2 runs
in O(k?logn) time using knC(n, kn) processors. Because knC(n, kn) > C(n,m), the
total complexity is as stated. O

The main certificate theorem also gives an efficient algorithm on the distributed
model of computation. For general k, the first distributed algorithm for undirected
sparse certificates was presented in the preliminary version of this paper [10]. For k = 2,
Itai and Rodeh have previously given a distributed algorithm for undirected sparse cer-
tificates [21].

THEOREM 2.7. For an undirected graph with n vertices and m edges, a sparse certificate
for k-vertex connectivity with at most k(n—1) edges can be found in O(kn log® n) distributed
time using O(k(m + nlog® n)) messages.

Proof. This proof follows from Theorems 2.4 and 2.2. For ¢ > 1, notice that the
diameter of G;_; may increase to Q(n). O

For sequential computation, linear-time algorithms for sparse certificates for the 2-
vertex connectivity and the 3-vertex connectivity of undirected graphs have been given
by Itai and Rodeh [21] and Cheriyan and Maheshwari [7], respectively. For general k,
Nagamochi and Ibaraki have recently given a linear-time algorithm for sparse certifi-
cates for undirected graphs [27]. The main certificate theorem gives a slower sequential
algorithm for general k.

THEOREM 2.8. For an undirected graph with n vertices and m edges, a sparse certificate
for k-vertex connectivity with at most k(n — 1) edges can be found in O(k(m+n)) sequential
time.

Proof. The proof is obtained by Theorems 2.4 and 2.3. 0

For testing the k-vertex connectivity of undirected graphs, sequential running times
of O(k*n?) for k < v/n and of O(k3n!-3) for k > ,/n have been reported in Nagamochi
and Ibaraki [27]. The main certificate theorem gives the same sequential complexity,
when combined with Even’s k-vertex connectivity algorithm [13].

THEOREM 2.9. The k-vertex connectivity of an n-vertex undirected graph can be tested
in O(k2n?) sequential time for k < \/n and in O(k3n'-®) sequential time for k > \/n.

Proof. First use Theorem 2.8 to find a sparse certificate. Then run the k-vertex
connectivity algorithm of Even [13], [14]. a

COROLLARY 2.10. For k = O(1), the k-vertex connectivity of an n-vertex undirected
graph can be tested in O(n?) sequential time.

162 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

Proof. The proof follows from Theorem 2.9. 0

2.3. The proof of the main certificate theorem. The main certificate theorem states
that a certificate with at most k(n — 1) edges can be computed by successively finding
the edge set E) of a scan-first search spanning forest of Go = G, the edge set E; of a
scan-first search spanning forest of G; = (V, E — E,), .. ., the edge set E, of a scan-first
search spanning forest of Gx—1 = (V,E — (E; U --- U E;_4)), and taking their union
EiU---UEg_;.

For i = 1,...,k, let F; denote the spanning forest computed by the ith scan-first
search (i.e., F; has edge set E;), and let H; denote the subgraph (V, (E; U- - -UE;)). See
Fig. 2 for an example illustrating the definitions of G;, F; and H;. Clearly, the theorem
holds if Hy, is k-vertex connected. To prove the theorem by contradiction, suppose that
H,, is not k-vertex connected, and that G is k-vertex connected. Then there is a subset
S of at most k — 1 vertices such that H; — S is disconnected, by Menger’s theorem.
The next lemma shows that at least one tree of the last scan-first search forest Fj, must
contain vertices of two or more connected components of Hy — S.

G =Go

=
€

Gi=G-F Y Hy=FUF,

r=a
@ b ks
e e
3
a
-]
b c
g e
F;

A A R

G2 =G - (FUF, Fy Hy= FUFRUFs

FI1G. 2. An example illustrating the definitions of G;, F;, and H; when G is K.

LEMMA 2.11. Suppose that Hy, is not k-vertex connected, and that G is k-vertex connected.

Then the following two statements hold.:

1. There is a subset S C V with |S| < k such that Hy, — S is disconnected;

2. Fy contains a simple tree path Py, whose two endpoints are in different connected
components of Hy, — S.

Proof. Focus on the second statement. By the k-vertex connectivity of G, the graph
G — S obtained by deleting S from G is connected because S contains k£ — 1 or fewer
vertices. Because Hy, — S is disconnected and G — S is connected, there exists an edge

SPARSE CERTIFICATES AND k£-VERTEX CONNECTIVITY 163

e in G whose endpoints are in two different connected components of H;, — S. The
edge e is not in Hy, and so is not in F; U --- U E;_;. Hence the edge e is in Gx—1 =
(V,E — (Ey U---U Ex_1)), and so the two endpoints of e are in the same connected
component of G_;. Because Fy, is a scan-first search forest in G_1, the forest Fj, has
a spanning tree for the connected component in Gk—; that contains e. Therefore, Fj,
contains a simple tree path Pj between the two endpoints of e. This shows that the
second statement holds. O

To finish the proof of Theorem 2.4, the following discussion proceeds to show that
the path Py of Lemma 2.11 cannot exist, yielding the desired contradiction.

A few definitions are in order. Let w denote the size of S. The proof of Theorem
2.4 makes crucial use of the following indexing scheme of S. Let sy,..., s, denote the
vertices of S such that s; is the first vertex in S — {s1,...,s;—1} that is scanned by the
ith search. Because w < k by the first statement of Lemma 2.11, this indexing scheme is
well defined and establishes a one-to-one onto correspondence between the vertices in
S and the forests Fy, ..., F,,.

For each s; in .S, the home component of s; is defined as follows. In the forest F;, let
r be the root of the tree that contains s;. There are three cases.

Case 1. If r ¢ S, then the home component of s; is the connected component in
Hj, — S that contains .

Case 2. If r € S and r # s;, then the home component of s; is the home component
of r.

Case 3. If r = s;, then s; has no home component.

Figure 3 illustrates the definition of home components. The next lemma shows that
the definition is consistent.

home
component

forward
edges

FIG. 3. Illustration of the definitions of home components and of forward, back, and side edges (of vertex s;).

LEMMA 2.12. For each s; € S, if s; satisfies Case 1 or Case 2 of the above definition,
then the home component of s; is a connected component of Hy, — S. If s, satisfies Case 3,
then s; has no home component.

Proof. The lemma is obviously true if s; satisfies Case 1 or Case 3 of the definition.
For Case 2, the lemma is shown by induction on the indices of S.

Induction Hypothesis: For all j < i, if s; satisfies Case 2 of the above definition,
then the home component of s; is a connected component of Hy — S.

Induction Step: The goal is to show that s; has a home component. Because s;
satisfies Case 2, the root of the tree in F; that contains s; is some s, € S.

CLAM 1. h <.

164 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

Proof. Note that i # h because s;, # s; by the definition of Case 2. To prove this
claim by contradiction, assume that A > 4. Then, s, € S — {s1,..., s;—1}. Moreover,
because s; is a descendant of s, in F;, the ith search scans the vertex s, before s;. Thus,
the vertex s; should not have been indexed i. This is a contradiction. Consequently, i
must be smaller than i. This finishes the proof of Claim 1. 0

CLAIM 2. No tree of F}, has sy, as its root.

Proof. To prove this claim by contradiction, assume that s, is a root in Fj,. Then the
edges in G that are adjacent to s, and are not in Fi,. .., F,_, would all be included in
F},. Consequently, s, would be an isolated vertex in Gj,. Because ¢ > h by Claim 1, s,
would be an isolated vertex in F;. This contradicts the fact that s; is a descendant of s,
in F;. Therefore, sy, is not a root in Fj,. This finishes the proof of Claim 2.

To show that s; has a home component, by the definition of Case 2, it suffices to
prove that s has a home component. If Case 1 holds for s, then by definition, s, has a
home component. If Case 2 holds for s, then by Claim 1 and the induction hypothesis,
sp, has a home component. Case 3 cannot hold for s;, by Claim 2. This finishes the proof
of the lemma. 0

To describe the key properties of scan-first search, more definitions are needed. For
each vertex s € S if s has a home component, let hce(s) denote the home component of
s; if s has no home component, let hee(s) denote s itself. Moreover, for eachv € V — S,
let hee(v) denote the connected component in Hy, — S that contains v.

Given a forest F;, a jump of F; is a simple tree path Q = vy,...,v, of F; with
hee(v1) # hee(vg).

For each vertex s € S, the edges incident with s in G are classified into three types
as follows. The back edges of s are those between s and its home component. The side
edges of s are those between s and S — {s}. The rest of the edges incident with s are
the forward edges. Note that if s does not have a home component, then it has no back
edges. Refer to Fig. 5 for an illustration of these definitions.

The next lemma shows a key property of the first scan-first search, and the following
lemma, which is the critical one for the proof of the main certificate theorem, generalizes
the key property to the first i scan-first searches for all i € {1,2,...,w}.

LEMMA 2.13. The following two statements are true.

1. Every jump of F contains at least one vertex of S.

2. The scan-first search forest Fy contains all the forward edges of s, .

Proof. To prove the first statement by contradiction, assume that F; has a jump
Q = v1,...,vq Which contains no vertices from S. Then, v;,v, € V —S. By the definition
of hee, hee(vy) and hee(vg) are connected components in Hy, — S. By the definition of a
jump, hee(vr) # hee(vg). Insum, Q is a path in Hy, that connects two different connected
components of Hy — S. Therefore, () must contain a vertex from S, contradicting the
assumption of the proof. This finishes the proof of the first statement.

To prove the second statement, note that F; is a tree because Gy = G is connected.
Let r be the root of F;. Then there are two cases: eitherr € Sorr ¢ S.

Case 1. r € S. By the definition of the indexing scheme of S, r = s;. When the first
search scans s;, none of the neighbors of s; in G have been marked. Consequently, F;
includes all edges incident with s; in G, and hence the lemma holds for this case.

Case 2. r ¢.5. Refer to Fig. 4(ii) for an illustration of this case. By definition, s; has
a home component and hee(r) = hee(sy). To prove this case by contradiction, assume
that there is a forward edge e = {s1,z} ¢ Fi. This can happen only if the first search
marks z before it scans s;. Focus on the tree path, say, Q of F; from r to x. Because e is
a forward edge, hce(s1) # hee(x). Therefore, hee(r) # hee(z) and the path @ is a jump

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 165

of Fy. By the first statement of this lemma, @) contains a vertex s € S. Because s is an
ancestor of z in Fy, the first search scans s before or when it marks z. Hence the first
search scans s before it scans s;. However, this contradicts the definition of the indexing
scheme of S, because s; should have received a higher index. This finishes the proof of
case (2) of the second statement, and completes the proof of the lemma. g

home
component
of r and s;

home
component V1
o

home
component
of z

component,
of r and s;

component
of s;

(i)

FIG. 4. Proof of the main certificate theorem. (i) Proof of Claim 3 (in Lemma 2.14) and Lemma 2.15. (ii)
Proof of Lemma 2.13 and Claim 4 (in Lemma 2.14). (iii) Proof of Claim 5 (in Lemma 2.14).

LEMMA 2.14. Foreach i € {1,2,...,w}, the following statements are true.
1. Every jump of F; contains at least one vertexin S — {s1,...,8i—1}.
2. F,..., F; contain the following edges of G :
(a) All forward edges of s;, and
(b) All side edges {s;,s;} with i > j and hcc(s;) # hee(s;).

Proof. This lemma is proved by induction on i as follows. The base step follows
from Lemma 2.13; note that Statement 2(b) holds vacuously for i = 1. The induction
hypothesis is that the lemma holds for i = ¢. The induction step shows that the lemma
holds for 7 = ¢ + 1. This is proved by the following three claims.

CLAIM 3. Statement 1 holds for i =t + 1.

To prove the above claim by contradiction, assume that F;, hasajump @ = vy, ...,
vg Which contains no vertices from S — {sy, ..., s;}. Refer to Fig. 4(i) for an illustration.
Let W be the set of vertices that are in both @ and S. Let Uy be the set of edges in Q) that
each have two endpoints in Hy, — S. Let U; be the set of edges in @ that each have one
endpoint in W and the other endpoint in Hy — S. Let U, be the set of edges in () that
each have two endpoints in W. Observe that for all edges {z, y} € Uy, hee(z) = hee(y).
Next, from the assumption of the proof, W C {s1,..., s;}. Therefore, from statement
2(a) of the induction hypothesis, the edges in U; cannot be forward edges and hence
for all edges {z,y} € Ui, hce(z) = hee(y). Furthermore, because the edges in U, are

166 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

side edges, from statement 2(b) of the induction hypothesis, for all edges {z,y} € Us,
hee(z) = hee(y). Hence, for all vertices z,y € Q, hee(z) = hee(y). In particular,
hec(v1) = hec(vg), contradicting the assumption that Q is a jump. This finishes the
proof of Claim 3.

CLAIM 4. Statement 2(a) holds for i =t + 1.

To prove the above claim, let T be the tree of F;; that contains s;;; and let r be
the root of T'. Then there are two cases: (1) r # s¢41 0 (2) 7 = S¢41.

Case 1. r # s¢41. Refer to Fig. 4(ii) for an illustration of this case. By definition,
s¢4+1 has a home component and hee(r) = hee(st+1)- To prove this case by contradiction,
assume that there is a forward edge e = {sty1,2} & Fi41. This can happen only if
the (¢ + 1)th search marks z before it scans s;1;. From the existence of e, the tree
T contains z. So T contains a tree path @) from r to z. Because e is a forward edge,
hee(sg4+1) # hee(z). Therefore, hee(r) # hee(z), and Q is a jump of Fiy;. By Claim
3, Q contains a vertex s € S — {s1,...,5:}. Notice that z # s because © € Hy — S.
Therefore, s is an ancestor of z in T'. Consequently, the (¢ + 1)th search scans s before
or when it marks z. Thus, the (¢ + 1)th search scans s before it scans s;;;. Therefore,
s¢41 should not have been indexed by ¢ + 1, contradicting the indexing scheme of .S. This
finishes the proof of Case 1 of Claim 4.

Case 2. 7 = s;41. Notice that when the (¢ + 1)th search scans s;;, none of the
neighbors of s;4; in G; have been marked. So Fi., includes all edges incident with
s¢+1 in Gy. Consequently, Fi,. .., Fi4, include all edges incident with s;; in G and
statement 2(a) holds for Case 2. This finishes the proof of Case 2 of Claim 4 and the
proof of Claim 4.

CLAIM 5. Statement 2(b) holds for i =t + 1.

To prove the above claim, let T be the tree of F;; that contains s; 1, and let r be
the root of T'. Then there are two cases: (1) r # S¢41 Or (2) r = S¢41.

Case 1. r # s;41. Refer to Fig. 4(iii) for an illustration of this case. By definition,
st+1 has a home component and hee(r) = hee(st4+1). To prove this case by contradiction,
assume that there is aside edge e = {s¢1,5;} & Fi41suchthatt+1 > jand hee(sg41) #
hee(s;). This can happen only if the (¢ + 1)th search marks s; before it scans s;,;. From
the existence of e, the tree T' contains s;. So T contains a tree path Q from r to s;.
Notice that hee(r) = hee(sg41) # hee(s;). Therefore, Q is a jump of Fyy ;. Next, let W
be the set of vertices that are in both S and Q. Notice that s; € W. Also, s; is a proper
descendant of all vertices in W — {s,}, and the (¢ + 1)th search scans W — {s;} before
it marks s;. In sum, the (¢ + 1)th search scans W — {s;} before it scans s;;1. Then, by
the indexing scheme of S, W — {s;} C {si,...,s:}. By the assumption of the proof,
sj € {s1,...,s:}. Hence, W C {s1,...,s:}; by Claim 3, this contradicts the assumption
that @ is a jump of F;,;. This finishes the proof of Case 1 of Claim 5.

Case 2. r = s;41. This case is exactly the same as case (2) of Claim 4. This finishes
the proof of case (2) of Claim 5, the proof of Claim 5, and the proof of the induction
step. 0

To complete the proof of the main certificate theorem, recall our assumption that Hy,
is not k-vertex connected, while G is k-vertex connected. Then Lemma 2.11 shows that
F}, must contain a path P, whose endpoints are in two different connected components
of Hy — S, where S is a subset of V with |S| < k whose deletion disconnects Hy. The
next lemma shows that the path Py, cannot exist, using the same argument as in the proof
of Claim 3 in Lemma 2.14, and thus completes the proof of Theorem 2.4.

LEMMA 2.15. The path Pj, of the second statement of Lemma 2.11 cannot exist.

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 167

Proof. To prove the lemma by contradiction, assume that P exists. Let P, =
v1,...,Y4. Refer to Fig. 4(i) for an illustration. Because the two endpoints of P, are
in two different connected components of Hy — S, hce(v1) # hec(vg) and the path Py
is a jump of Fj. Let W be the set of vertices that are in both P and S. Let Uy be the
set of edges in Py, that each have two endpoints in Hy, — S. Let U; be the set of edges
in Py, that each have one endpoint in W and the other endpoint in H — S. Let U, be
the set of edges in P, that each have two endpoints in W. Observe that for all edges
{z,y} € Uy, hee(x) = hee(y). Next, because W C S = {s1,...,5,}, by statement
2(a) of Lemma 2.14, the edges in U; cannot be forward edges and hence for all edges
{z,y} € Uy, hee(z) = hee(y). Furthermore, because the edges in U, are side edges, from
statement 2(b) of Lemma 2.14, for all edges {z,y} € Us, hcc(z) = hee(y). In sum, for
all vertices z,y € Py, hce(z) = hee(y). In particular, hee(v,) = hee(vg), contradicting
the assumption that Py is a jump. This finishes the proof of Lemma 2.15. 0

2.4. A generalization of the main certificate theorem. This section gives a general-
ization of the main certificate theorem, and discusses its applications.

For two distinct vertices z and y in G, the local connectivity of x and y, denoted
k(z,y), is the maximum number of internally vertex-disjoint paths between z and y in
G. A certificate of local connectivity k for G is a subset E’ of E such that for every two
distinct vertices z and y, £'(z,y) > min{k, k(z,y)}, where «/(z,y) denotes (z,y) for
the subgraph (V, E’). A certificate of local connectivity k is said to be sparse if it has
O(kn) edges.

THEOREM 2.16 (The generalized certificate theorem). Let G = (V, E) be an undi-
rected graph, and let n denote the number of vertices. Let k be a positive integer. For
i = 1,2,...,k, let E; be the edge set of a scan-first search forest in the graph G;_, =
(V,E—(E1U---UE;_1)). Then E; U---U Ey, is a certificate of local connectivity k for
G, and this certificate has at most k(n — 1) edges.

Proof. The proof is essentially the same as that of the main certificate theorem. Let
Hj, be the subgraph (V, (E, U- - -UEy)), and let ki (z, y) denote k(z, y) for Hy. To prove
the theorem by contradiction, assume that xi(u,w) < min{k, k(u,w)} for some two
vertices u, w € V with u # w.

Although Lemma 2.11 does not apply now because it supposes that G is k-vertex
connected, we first show that the two statements in Lemma 2.11 hold under the assump-
tion that ki (u,w) < min{k, x(u,w)} for some two vertices u,w € V with u # w. By
Menger’s theorem, there exist two vertices v/, w’ € V andaset S C V — {u/,w'}
such that (1) |S| = kk(u,w), (2) v’ and w’ are in different connected components of
Hj — S, and (3) v’ and v’ are in the same connected component of G — S. By properties
(1) and (2), there is a subset S C V with |S| < k such that Hy — S is disconnected.
By property (3), there exists an edge e in G — S whose endpoints are in two different
connected components of Hy — S. Clearly, the edge e is not in Hj, and hence e is in
Gr-1= (V,E—(E1U---UEj_1)). So the two endpoints of e are in the same connected
component of G_;. Because Fy, is a scan-first search forest in G_1, the forest F, has a
spanning tree for the connected component in G that contains e. Therefore, F}, con-
tains a simple tree path P;, whose two endpoints are in different connected components
of Hy — S. This finishes the proof of the two statements in Lemma 2.11.

With the two statements in Lemma 2.11 proven, we can complete the proof of this
theorem by using Lemmas 2.13, 2.14, and 2.15 to show that the above path Pj cannot
exist. 0

The next corollary is useful for computing the k-separators of a graph. For a positive
integer k, a k-separator of G is a set S of k vertices such that G — S has more connected

168 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

components than G.

COROLLARY 2.17. For a positive integer k < nand foralli € {1,...,k — 1}, G and
Hy = (V,(E1 U--- U Ey)) have the same i-separators.

Proof. The proof is straightforward by Theorem 2.16. 0

Some of the recent algorithmic research on k-connected graphs has focussed on
highly efficient parallel algorithms for finding k-vertex connected components and k-
separators for small k, namely, k = 2, 3, and 4. Theorem 2.16 and Corollary 2.17, when
combined with Theorem 2.5, yield immediate improvements to several of these algo-
rithms.

An undirected graph is said to be bridge-connected if for each edge the deletion
of that edge leaves the graph connected. For a bridge-connected graph, Fussell and
Thurimella [16] have given an algorithm for finding an open ear decomposition for each
biconnected component on an O(y/n/logn x y/n/logn) mesh of trees architecture in
O(log® n) time. We improve the running time to O(log> n) by first finding a sparse cer-
tificate of local connectivity 2 for the input graph, and then running their algorithm on
the subgraph induced by the certificate. The main bottleneck of the original algorithm
[16] is to compute, for a given spanning tree T of the input graph, the nearest common
ancestor in T of all nontree edges. Note that by executing their algorithm on a sparse
certificate, the worst-case number of nontree edges decreases from Q(n?) to O(n).

THEOREM 2.18. Let G = (V, E) be a bridge-connected graph, and let n denote the
number of vertices. An open ear decomposition for each biconnected component of G can
be found on an O(y/n/ logn x \/n/ log n) mesh of trees architecture in O(log® n) time.

Fussell, Ramachandran, and Thurimella [15] have given an algorithm for comput-
ing the triconnected components of an undirected graph in O(logn) time with a time-
processor product of O((m+n) loglogn). We obtain the following improvement by first
finding a sparse certificate of local connectivity 3 for the input graph, and then running
their algorithm on the subgraph induced by the certificate.

THEOREM 2.19. Let G = (V, E) be an undirected biconnected graph, and let n and m
denote the number of vertices and edges. The 3-vertex connected components of G can be
found on an ARBITRARY-CRCW PRAM ir O(log n) time with a time-processor product
of O(ma(n, m) + nloglogn).

For an undirected triconnected graph, Kanevsky and Ramachandran [22] have given
an algorithm for finding a compact representation of all the 3-separators. Their algo-
rithm runs in O(log? n) time with a time-processor product of O(n? log® n). We obtain
the following improvement in two steps. First, find a sparse certificate E’ of local con-
nectivity 4 for the input graph G = (V, E). Then, for each vertex v, use the algorithm of
Fussell, Ramachandran, and Thurimella [15] to find all the 2-separators of (V, E’) —{v}.

THEOREM 2.20. Let G = (V, E) be an undirected triconnected graph, and let n denote
the number of vertices. An O(n?) representation for all the 3-separators of G can be found
on an ARBITRARY-CRCW PRAM in O(logn) time with a time-processor product of
O(n?loglogn).

The algorithm of Kanevsky and Ramachandran [22] also tests the input graph for
4-vertex connectivity in O(log” n) time using O(n?) processors. Note that for testing 4-
vertex connectivity, our Theorem 2.6 gives a running time of O(log n) using 4nC'(n, 4n) =
O(n2a(n, 4n)/log n) processors.

3. An online algorithm for sparse undirected graph certificates and its paralleliza-
tion. We first present a sequential online algorithm for finding sparse certificates for the
k-vertex connectivity of undirected graphs. Then we parallelize the algorithm to obtain
a randomized NC algorithm with a complexity independent of k.

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 169

Let G = (V, E) denote the input undirected graph to our online certificate algo-
rithm. Let n and m denote the numbers of vertices and edges of G. G is given one edge
at a time; the input order e, . .., e, of the edges is arbitrary. Upon receiving an edge
e;, the online certificate algorithm must decide whether to include e; in the final cer-
tificate F* C E. Once an edge is included, it cannot be deleted from F' at a later step;
similarly, if an edge is not included, it cannot be added to F later. Initially, F' is empty.
Our online algorithm incrementally updates F' by examining each input edge {v, w} and
including {v,w} in F if and only if the subgraph induced by the current F has at most
k — 1 vertex-disjoint paths between v and w.

The detailed description of our online certificate algorithm is given in Fig. 5. For an
example, refer to Fig. 6. The next lemma shows that the F' output by the online certificate
algorithm is indeed a certificate of k-vertex connectivity.

Subroutine ONLINE CERTIFICATE

Input: the edges of an undirected graph G = (V, E) given one at a time in an arbitrary
orderey,...,en.

Output: a sparse certificate F' C FE for the k-vertex connectivity of G.

begin
F =0
fori:=1tomdo
begin
Let v and w denote the endpoints of e;;
Let k; denote the maximum number of vertex-disjoint paths between v
and win (V, F);
if k; < k then F := F U {e;} else F remains unchanged,;
end
end.

FiG. 5. Computing a sparse certificate online.

F1G. 6. Using the online algorithm to find a certificate for 2-vertex connectivity. The edge ordering is
e1,€2,...,e10. F does not contain e7, for example, because in Fg = {e1,e2,...,eg} there are two vertex-
disjoint paths between the endpoints of er.

LEMMA 3.1. If G = (V, E) is k-vertex connected, then the final subgraph (V, F) is also
k-vertex connected.

170 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

Proof. To prove the lemma by contradiction, suppose that G is k-vertex connected
but (V, F) is not k-vertex connected. Then, there is a set S of less than k vertices such
that (V, F') — S is disconnected. Let I be a connected component of (V, F) — S. Since
G — S is connected, G has an edge {v,w} withv € Tandw € V — (I U S). Because
(V, F) has at most | S| vertex-disjoint paths between v and w and because |S| < k, the
online certificate algorithm would have added the edge {v,w} to F' when it examined
{v, w}. This contradicts the assumption of the proof. Thus the lemma is true. O

Next we prove that the final F' has at most 2kn edges by combining the following
lemma with a theorem due to Mader.

LEMMA 3.2. The final subgraph (V, F) does not contain any subgraph that is (k + 1)-
vertex connected.

Proof. To prove the lemma by contradiction, suppose that (V, F') contains a (k + 1)-
vertex connected subgraph J. Let e; = {v, w} be the edge with the largest index among
all the edges in J. In other words, e; is the last edge added to J by the online certificate
algorithm. Then J — {e;} has k vertex-disjoint paths between v and w because J — {e; }
is k-vertex connected. Therefore, when the algorithm examined e;, it would not have
added e; to F. This contradicts the assumption of the proof and finishes the proof the
lemma. 0

- THEOREM 3.3 (Mader [5]). For an integer k > 1, if an undirected graph has at least
2k — 1 vertices and at least (2k —1)(n— k) + 1 edges, where n denotes the number of vertices,
then it contains a (k + 1)-vertex connected subgraph.

LEMMA 3.4. The final F has at most 2kn edges.

Proof. If n > 2k — 1, then the lemma follows from Lemma 3.2 and Theorem 3.3. If
n < 2k — 1, then F contains at most n(n — 1)/2 edges, which is less than 2kn. O

The next theorem summarizes the discussion of the online certificate algorithm.

THEOREM 3.5. Let G be an n-vertex undirected graph. Assume that the edges of G are
given one at a time. Then a certificate for the k-vertex connectivity of G with at most 2k,
edges can be computed on line in O(k?n) time per input edge.

Proof. The correctness of the online certificate algorithm follows from Lemmas 3.1
and 3.4. As for the running time, note that for each edge e;, the algorithm attempts
to find k vertex-disjoint paths between the endpoints of e; in (V, F). This takes time
proportional to k times the size of (V, F') [14]. Therefore, the running time for examining
one edge is O(k%n). 0

A fast parallel version of the online certificate algorithm can be obtained by a parallel
greedy method as follows. Let By = (. Fori = 1,...,m, let E; denote the edge set
{e1,e2,...,e;}. Fori =1,...,m, testin parallel whether the graph (V, E;_1) has at least
k vertex-disjoint paths between the endpoints of e;. The certificate F' contains exactly
those edges e; that fail the test.

Notice that the main difference in the computations executed by the above parallel
algorithm and the online one is that the maximum number of vertex-disjoint paths be-
tween the endpoints of e; is found in the subgraph (V, E;_;) by the parallel algorithm
and in (V, F') by the online algorithm. The next lemma shows that this difference does
not affect F.

LEMMA 3.6. The online certificate algorithm and its parallel version compute the same
final F.

Proof. Fort = 1,...,m, let F; denote the F' found by the online algorithm after it
processes ez, and let Fy denote the empty set. Also, let Cp, and C,; denote the final F
computed by the parallel algorithm and the online algorithm, respectively. The goal is
to show that C, = C,. Observe that C,, C C, because F;_; C E;_; for all t. Thus, to

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 171

prove the lemma by contradiction, it suffices to assume that there exists an edge e; =
{v,w} € Cq — Cp. Then, by definition, there are at least k vertex-disjoint paths between
v and w in (V, E;_;) and there are less than k vertex-disjoint paths between v and w in
(V, F;~1). Therefore, there exists a set S C V — {v,w} with |S| < k such that (1) v
and w are disconnected in (V, F;_;) — S, and (2) there exists an edge e; € FE;_; — F;_;
whose endpoints are in two different connected components of (V, F;_;)—.S. Notice that
Jj <i—1because e; € E;_;. Moreover, e; € F; because e; ¢ F;_; and F; C F;_;. On
the other hand, observe that (V, F;_;) contains less than k vertex-disjoint paths between
the endpoints of e;. Then, because F;_; C F;_,, (V, Fj_,) also contains less than &
vertex-disjoint paths between the endpoints of e;. But then the online algorithm would
have included e; in F;. This contradicts the earlier conclusion that e; ¢ F;. Therefore,
the assumption of the proof is incorrect and the lemma is correct. O

The next theorem summarizes the discussion of the parallelization of the online
certificate algorithm. Let P(n,m) denote the number of processors needed to find a
maximum matching in O(log® n) time with high probability. Currently, the best value
known for P(n,m) is O(m-n338) [26].

THEOREM 3.7. Given an undirected graph with n vertices and m edges, a certificate
for k-vertex connectivity with at most 2kn edges can be found by a randomized algorithm in
O(log? n) time using m - P(n, m) processors on a CRCW PRAM.

Proof. The correctness of the above parallel algorithm follows from Lemmas 3.6, 3.1,
and 3.4. As for the complexity, to test in parallel for the existence of k vertex-disjoint
paths between two vertices, we use the well-known method of transforming this problem
to the maximum matching problem [6]. o

4. A sequential algorithm for small certificates for directed graphs. The main re-
sult of this section is stated in the following theorem.

THEOREM 4.1. Let G = (V, E) be a directed graph with n vertices and m edges.
A certificate for the k-vertex connectivity of G with at most 2k*n edges can be found in
O(k-m- max{n, k\/n}) sequential time.

Notice that the running time of our directed graph certificate algorithm is the same
as the best time complexity known for testing directed k-vertex connectivity [17]. Mader
has shown an O(kn) upper bound for the minimum size of a certificate for directed k-
vertex connectivity [25]. For k > 1, our directed graph certificate algorithm is the best
algorithm known for finding a certificate of size at most n - k9(1),

Our proof of Theorem 4.1 is based on the next lemma. It allows certain edges of a
vertex to be deleted without affecting the connectivity elsewhere. For a directed graph
G and for every two distinct vertices =,y € G, let kg(z, y) denote the maximum number
of internally vertex-disjoint directed paths from z to y in G.

LEMMA 4.2. Let G = (V, E) be a directed graph. Let z,u, v be vertices in G. Let e be
an incoming edge of uin G. Let H = (V, E — {e}). If ku (z,u) > k and kg(z,v) > k, then
ku(z,v) > k.

Proof. To prove the lemma by contradiction, assume that kg (z,v) < k. Then, to
derive a contradiction by Menger’s theorem, it suffices to show that for every vertex
subset S C V — {z,v} with | S| < k, there exists a directed path in H — S from z to v.

Because kg(z,v) > k, G contains k internally vertex-disjoint directed paths P, .. .,
P, from z to v. Because s (z,v) < k, the edge e must be in one of the P;’s. Without loss
of generality, assume that e is in Py. Let L be the subpath of P, from u to v. Note that
L is a directed path in H. Also, note that because the P;’s are internally vertex-disjoint,
Py,..., P;_, cannot contain e and therefore remain directed paths in H.

There are two cases based on whether L and S intersect.

172 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

Case 1. LN S # (. Note that |S — L| < k — 2. Because Py,..., P,_; are internally
vertex-disjoint in H, at least one of those P;’s does not contain any vertices from S, and
remains a directed path from z to v in H — S. This is a desired contradiction and thus
completes the proof of Case 1.

Case 2. LN S = (. Note that L is directed path in H — S from « to v. Because
km(2,u) > k, H contains k internally vertex-disjoint directed paths @1, ..., Q% from z
to u. Because Q1, . .., Qy are internally vertex-disjoint and |S| < k — 1, at least one Q;
does not contain any vertices from S. Then Q; remains a directed path from z to v in
H — S. Therefore, the directed path formed by Q; and L is a directed path from z to v
in H — S. This is a desired contradiction and thus finishes the proof of Case 2. O

The next lemma uses Lemma 4.2 to compute an important subset of a desired cer-
tificate for a directed graph. In the lemma, let G = (V, E) be a directed graph with n
vertices and m edges. Let z be a vertex in G.

LEMMA 4.3. Assume that kg (z,v) > kforallv € V —{z}. Then there exists a subgraph
H = (V, E') computable in O(k-m-n) time with the following properties:

1. ForallveV —{z},ku(2,v) = k;
2. The indegree of z in H is zero; and
3. Forallv € V — {z}, the indegree of v in H is exactly k.

Note that because of the indegree constraints, H is a minimum-size subgraph with
kg (z,v) =kforallveV — {z}.

Proof. H can be computed by the algorithm FIND-H given in Fig. 7. Note that delet-
ing the incoming edges of z does not affect (2, v). Then, the correctness of FIND-H
follows directly from repeated applications of Lemma 4.2. As for the time complex-
ity, each iteration of the do loop takes O(k-m) time [14]. So the total runing time is
O(k-m-n). d

Subroutine FIND-H
Input: a digraph G = (V, E) and a vertex z € V with kg(2,v) > kforallv € V — {z}.
Output: a minimum-size subgraph H = (V, E') with kg (z,v) = kforallv € V — {z}.
begin

Let E’ be obtained from E by removing all incoming edges of z;

Let vy, vs,...,v,_1 be the vertices in V — {z};
fori=1ton—1do
begin
Find k internally vertex-disjoint directed paths from z to v; in the sub-
graph (V, E');

Delete from E’ all incoming edges of v; except the k incoming edges in
the k paths just found above;
end
end.

F1G. 7. Computing a subgraph H of Lemma 4.3.

Our directed graph certificate combines the subroutine FIND-H and the classic k-
vertex connectivity algorithm of Even [14]. The certificate algorithm computes a certifi-
cate F' for the input graph G in five steps as follows.

1. Test the k-vertex connectivity of G. If G is not k-vertex connected, then let F' = ()
and stop; otherwise, continue the computation.

2. Pick k arbitrary vertices z1, ...,z € V. For all z; and «; with ¢ < j, compute k
internally vertex-disjoint directed paths in G from z; to z; and k internally vertex-disjoint
directed paths from z; to z;. Let Eq denote the set of the edges in all those paths.

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 173

3. Let Gt be the graph constructed by adding to G a new vertex z and 2k new edges
(z,21),...,(2,zx) and (21, 2), . .., (zk, 2).

4. Use FIND-H to find a subgraph H; = (VU{z}, E;) for G* and 2. Symmetrically,
find a subgraph Hy = (V U {2}, E,) for G* and z with respect to the reverse edge and
path directions.

5. Let the final certificate F' be Ey U E; U E; without the edges incident with z.

The next two lemmas show the correctness of the above certificate algorithm.

LEMMA 4.4. If G is k-vertex connected, then the subgraph (V, F') computed above is
k-vertex connected.

Proof. Let C = (V,F). Let Ct = (V U {z}, Ey U E; U E3). Note that C™ is the
graph constructed by adding to C the vertex z and the 2k edges (z,z1), ..., (z,zx) and
(x1,2),- .., (zk, z). Next, because E; U E, is included in Ct, by Lemma 4.3, kg+ (2, v) >
k and kc+(v,2) > k for all v € V. Because Ej is included in C, for all z; and z; with
i < j, ke(xs,x;) > k and ko (z;, ;) > k. Therefore, by the classic argument of Even
for his k-vertex connectivity algorithm, (V, F') is indeed k-vertex connected. |

LEMMA 4.5. |F| < 2k?n.

Proof. If G is not k-vertex connected, then |F| = 0. Otherwise, the upper bound of
|F'| follows from the facts that |E;| = |E2| = kn and |Ep| < k(k — 1)(n — 2 + k). O

"~ The next lemma finishes the proof of Theorem 4.1.

LEMMA 4.6. The above certificate algorithm runs in O(km max{n, k/n}) time.

Proof. Testing k-vertex connectivity takes O(km max{n, ky/n}) time [14]. Com-
puting Ey takes O(k*m min{k, \/n}) time. By Lemma 4.3, computing E; and E, takes
O(kmn) time. These three steps dominate the time complexity. Therefore, the total
running time is O(km max{n, k/n}). 0

5. Conclusions and open problems. Designing graph search procedures that are ef-
ficient in several major models of computation is an important issue in algorithmic graph
theory. We have shown that scan-first search can be performed extremely efficiently in
the parallel, the distributed, and the sequential models. Based on this unusual efficiency,
it is worth further research to find other applications for scan-first search.

We conclude with two open problems concerning graph connectivity. The first is
whether the k-vertex connectivity of an n-vertex directed graph can be tested in k©(})n?
sequential time. The second is whether a sparse certificate for the k-vertex connectivity
of an n-vertex undirected graph can be found deterministically in time polylogarithmic
both in k and n, using a number of processors polynomial both in k and n.

Acknowledgments. Thq authors wish to thank Martin Farach, Hillel Gazit, Samir
Khuller, Sandeep Sen, and Eva Tardos for helpful discussions.

REFERENCES

[1] A. AGGARWAL AND R. J. ANDERSON, A random NC algorithm for depth first search, Combinatorica, 8
(1988), pp. 1-12.

[2] A. AGGARWAL, R. J. ANDERSON, AND M. Y. KAO, Parallel depth-first search in general directed graphs,
SIAM J. Comput., 19 (1990), pp. 397-409; also appeared in the Proceedings of the 21st ACM
Symposium on Theory of Computing, Seattle, WA, May 15-17, 1989, pp. 297-308.

[3] B. AWERBUCH AND D. PELEG, Network synchronization with polylogarithmic overhead, in Proceedings of
the 31th Annual IEEE Symposium on Foundations of Computer Science, 1990, Vol. IL, pp. 514-522.

[4] C. BERGE, Graphs, second revised ed., North-Holland, New York, 1985.

[5] B.BoLLOBAS, Extremal Graph Theory, Academic Press, London, 1978.

174 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

[6] A. BORODIN, J. VON ZUR GATHEN, AND J. HOPCROFT, Fast parallel matrix and gcd computations, in Pro-
ceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, 1982, pp.
65-71.

[7] J. CHERIYAN AND S. N. MAHESHWARI, Finding nonseparating induced cycles and independent spanning
trees in 3-connected graphs, J. Algorithms, 9 (1988), pp. 507-537.

[8] J. CHERIYAN AND R. THURIMELLA, Finding sparse spanning subgraphs efficiently, preprint, August 1990.

[9] , On determining vertex connectivity, Tech. Report UMIACS-TR-90-79 CS-TR-2485, Institute for
Advanced Computer Studies, University of Maryland, College Park, MD, June 1990.

[10] ———, Algorithms for parallel k-vertex connectivity and sparse certificates, in Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, 1991, pp. 391-401.

[11] R. CoLE AND U. VISHKIN, Approximate and exact parallel scheduling with applications to list, tree and
graph problems, in Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer
Science, 1986, pp. 478-491.

[12] T H. CorMEN, C. L. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge,
MA, 1990.

[13] S. EVEN, An algorithm for determining whether the connectivity of a gra